Skip to main content

InTouch and UNIFORM-Agri collaborate to drive even greater dairy farm efficiency

Submitted by mdaly on Tue, 08/27/2019 - 08:45

[DUNBOYNE, Ireland and OOSTERSINGEL, the Netherlands] – InTouch, the award-winning feed management platform, and UNIFORM-Agri, one of the world’s leading herd management software providers, are pleased to announce an exciting new data-sharing collaboration, empowering dairy farmers with cutting-edge insights and herd management tools.

Each day, InTouch manages the feeding of over 300,000 cows in 37 countries worldwide. As part of the animal health and nutrition company Alltech, InTouch puts particular focus on providing farmers and nutritionists with the most relevant insights and analytics for delivering optimum nutrition to the herd. Creating a link between InTouch and UNIFORM-Agri’s herd management platform to automatically share herd data will further enhance the value of insights that can be provided. This collaboration will also reduce the need for manual input of data and ultimately enable both farmers and nutritionists to work together to make more informed herd-management decisions.

“At InTouch, we continually strive to evolve and deliver the best service to our customers,” said Conan Condon, director of InTouch. “Collaboration is a key part of this, and we are delighted to now work with such a respected name like UNIFORM-Agri to enhance our user experience. Together, we can provide the most effective insights and ensure that the herd’s diet can be quickly adapted to any changes in milk output.”

This desire to provide the best service possible is shared by UNIFORM-Agri, which for decades has been working together with dairy farmers globally to improve management efficiency.

“With UNIFORM-Agri, we want to support dairy farmers and their suppliers worldwide with the best and most user-friendly software solutions that help to build a profitable and sustainable business,” said Harm-Jan van der Beek, managing director of UNIFORM-Agri. “Working together with a partner such as InTouch helps us to achieve the goal of making it easier for the dairy farmer to gain more insights into the herd, leading to better results.”

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Programs and Services
<>Image Caption

InTouch and UNIFORM-Agri have announced a collaboration in which herd data can be automatically shared between each platform, reducing the need for manual input of data and delivering a more proactive approach to herd management.

Amanda Radke: Alternative "meat" vs. traditional beef - Which is really more environmentally friendly?

Submitted by rladenburger on Mon, 08/19/2019 - 15:24

Consumers are growing more and more environmentally conscious, and many have started to experiment with meat-free options. From plant-based burgers to burgers made entirely of tissue-cultured meat, are these really the "alternative meats of the future?" What does this mean for the beef industry, and which option is actually better for the environment?

The following is an edited transcript of David Butler's interview with Amanda Radke, beef blogger. Click below to hear the full audio. 

 

David:            I'm here with Amanda Radke, who's a South Dakota cattle rancher and a blogger with Beef Magazine. How are you doing, Amanda?

 

Amanda:        I'm doing great. How about yourself?

 

David:            Good! Thanks so much for being on the show.

 

Amanda:        Yeah, you bet.

 

David:            Let's talk a little bit about alternative proteins. You've been looking into that some lately and done some research on it, right?

 

Amanda:        Yeah. I think one of the biggest things that I wanted to emphasize in my message today was that I'm not anti-technology, and anything that we can come up with as far as food-science goes to feed the hungry planet is wonderful. So, I didn't want to pit traditional beef production against anything else, and I'm not against consumer choice. However, some of these Petri dish protein companies are really touting themselves as environmentally and ethically superior to traditionally raised beef, and so I wanted to highlight why the beef cow is incredible in providing a safe and nourishing beef product for us to consume — and, also, life-enriching byproducts, and that simply can't be replicated in a Petri dish.

 

David:            So, let's compare beef to some of the different alternative protein options out there — and I know there are a bunch of them, so maybe the first thing would be to say, what are all the different alternatives?

 

Amanda:        Sure. Well, we're seeing plant-based protein patties, like Beyond and Impossible, hitting the marketplace and receiving a lot of traction and attention from retailers carrying those options — and not just marketing them to your vegetarian and vegan crowd but marketing them to meat lovers as a direct replacement to a traditional cheeseburger. We also may see Petri-dish proteins enter the marketplace as soon as the end of the year, and so a lot of what we know about these products is conjecture right now, because these companies aren't really forthcoming with any information on their manufacturing processes. However, what I do know is that the modern beef producer of today has a lot of great advantages as far as efficiently producing beef and doing it in a way that is not just sustainable to our natural resources, but it's regenerative, too, and so that's really what I wanted to celebrate today in my message.

 

David:            Go into some more specifics on how beef production is regenerative. What do you mean when you say that?

 

Amanda:        When I say regenerative, I want to look specifically at rangelands and grasslands. A lot of times, consumers will say, “Well, we could just plow up that land and use it to grow crops or cereal grains or whatever to feed people,” but the fact of the matter is that most of this land is unsuitable for modernizing or farming and can only be used by ruminant animals — and if it were not, it would become a desert or a barren wasteland. So, cattle, with each bite of grass they take, with each step of their hooves, they aerate the soil. They reduce fuel for wildfires. They provide habitat for everything from bees to rabbits and mice to deer and foxes, so they're a critical component to our ecosystem, and they're just part of the balance. Not only that, but they can upcycle this poor, marginal, inedible, cellulosic material that is grass and they can convert it into a nutrient-packed superfood like beef.

 

David:            And it's not just grass, right? What other kinds of cellulose materials do they —

 

Amanda:        Sure. Well, it depends on the part of the country. They can eat everything from potato byproducts in Idaho to distillers grains in the corn belt, and so they can take byproducts of other crop production and other foods and can convert that into beef as well. I think, a lot of times, our consumers misplace the information or misplace the blame on climate change and greenhouse gas emissions because they've been told, if they skip eating meat one day out of the week, they'll save the planet — but, ultimately, I guess I really want to stress that Mother Nature wasn't wrong and the beef cow is incredible, and so we shouldn't throw the baby out with the bathwater, and that she can play a critical part in taking care of our natural resources and feeding a hungry planet.

 

David:            That's good to know. You've got some kinds of problems that you've outlined, where alternative proteins don't stack up to beef. Do you want to talk through some of those with us?

 

Amanda:        Sure. The first problem — and maybe it's just the advantage of the beef cow — but these companies haven't really proven their environmental impact. So, when they talk about the natural resources used in beef production, they also fail to acknowledge the energy use, the crops that are needed, the fact that there are still fetal cells that will be used in this production practice, the waste produced, as far as what's being grown in the laboratory.

 

                        This all has an environmental footprint as well, and so I think there's some burden of proof there for them to show us what their environmental footprint actually is, and can it compete if it goes to scale.

 

                        The next problem, as we discussed, is that this lab meat can't regenerate and build topsoil quite like cattle can, and so, anytime we plow up rangeland and pastures to be used for monoculture and crop production, we're losing that carbon capture of having that soil covered by grass. So just by having the grasslands maintained and not going into barren wasteland or trying to grow cereal grains or an alternative on this marginal land is something these Petri dish proteins can't do.

 

                        The next, and it's one I love talking about, is byproducts. When we think of beef cattle, we think of steaks and cheeseburgers, but it's so much more than that. It's things like insulin for diabetics, crayons, deodorants, leather goods like boots and belts and furniture, and everything in between. There are hundreds of byproducts that enrich our everyday lives that come from beef cattle — even organic fertilizer for vegetable production; that comes from cows, too. So, byproducts are a huge thing, and if we're going to try to replace the all-in-one machine that is the beef cow with synthetic or alternative options for all these byproducts, that's going to have an environmental footprint as well.

 

                        Then, another problem, a lot of these companies are promising that they're antibiotic-free and pathogen-free. I think it's unfair for any food company to claim that there aren't vulnerabilities as far as food safety goes, and we need more transparency as far as their antibiotic usage —  where are they vulnerable, where are points of contamination — and I'm thankful that the FDA and USDA are going to jointly regulate and oversee these production practices, but yet, I think there's a lot more they need to prove before they enter the marketplace.

 

                        Finally, someone told me, "Don't you feel bad eating cattle? Your diet leads to death," and I think it's important to note that, once again, every diet, no matter if it's total vegan or total carnivore, there's animal deaths involved. Every time a field is plowed, you're misplacing the wildlife that lived there. It's just a give and take. As a rancher, I understand the circle of life and I value that beef cattle for what she offers to people, to nourish and enrich people's lives. However, I think it's just a convenient thing that the plant-based folks kind of ignore that their diets also cause death and suffering as well, so it's just a matter of where you place your importance, I guess. For me, I can feel pretty confident that I'm utilizing a beef animal and respecting what she has to offer humanity while also respectfully caring for that animal, too, while she is in our care.

 

David:            Yeah, good point. I'm sure most people haven't even thought of the fact that crops do displace natural habitat. Pasture does, to an extent, too. That certainly is a problem, when deforestation occurs for pasture, but if you're on natural grasslands, that's not quite as big of an issue. You mentioned antibiotics, and I would think that most people would assume the cell-based or Petri dish-based meat wouldn't need any antibiotics, because these are not living animals that are walking around and potentially getting sick, so where would the antibiotics come into that process?

 

Amanda:        Sure. Well, without actually having seen the manufacturing process take place, I think there are a lot of unknowns there, and I can't speak with authority on how the antibiotics would be used. However, just like any living thing — especially when it's interacting with humans in a lab — there are those points of vulnerability where antibiotics might be applied and used in that setting. So, I appreciate the National Cattlemen's Beef Association coming out and saying strongly that we need more information and clarity on antibiotic usage in these Petri dish proteins' production practices, and that needs to be regulated and overseen by the USDA.

 

David:            So, you're talking about some sort of instance where there's contamination in the lab or in the production process.

 

Amanda:        Perhaps. It could come out the collection phase, too. We're dealing with live animals at that stage as well, as far as the fetal cells, and so, yeah, I think maybe it's — like I said, we're in its infancy right now, where we don't totally know and understand the processes.

 

I really hate fear-mongering about any products that I don't know or understand, and I'm always very mindful of, no matter what the beef is, whether it's natural, grass-fed, organic or Petri-dish, it's an option for the consumers and we're getting protein on people's plate, and these products could be viable in the marketplace and a solution to giving people around the world that product. However, where I have problems is in this rush to market and in this rush to get a return on investment with these major investors that are actively participating in these production practices. I worry that food safety, transparency, nutritional information might not be as clear as they should be for our consumers.

 

David:            So, we need to be cautious there, yeah. Talk a little bit about the natural resources, the inputs, that go into cell-based proteins.

 

Amanda:        Sure. Again, this is conjecture, really, from what I've read and can understand, but you're going to need, obviously, a fetal calf and cells from that calf. They'll grow in a suitable medium, and, from what I understand, it could be soybeans or corn, mushrooms, and could even be cattle-based, just depending on the company. That growth medium will grow the muscle fibers and also the fat fibers; they're grown separately and have to come together. By my understanding, they're kept at 98 degrees Fahrenheit, and these cells, as they duplicate and grow, they produce waste, and so, then, waste has to be taken out of that Petri dish as well.

 

                        It's a huge process. There might be some opportunities for crop producers, corn and soybean growers, to provide this medium for these cells to grow. I don't want to be shortsighted and think that these products don't have a place in agriculture; however, it's difficult for me, as a beef producer, to see them disparage our industry while also trying to hijack our nomenclature, like beef, and the great reputation that beef has with our beef-loving consumers, and use it to market their product.

 

David:            Yeah. If you're going to have to grow the cells in a medium that's made out of something — because it's not magic, they have to provide nutrients to the cells — if those are supplied with soybeans or corn or any kind of plant, then it's not necessarily going to have a smaller footprint than a cow.

 

Amanda:        Exactly, yes.

 

David:            It might or might not, but it's not going to be drastically — it's not going to be free of inputs, right?

 

Amanda:        Correct.

 

David:            And they also will have to maintain this environment at this temperature and keep it in a sterile setting, and that's going to take a lot of energy.

 

Amanda:        Absolutely, and, yeah, I think they're downplaying that side of their story while really focusing on any negatives they might perceive about traditionally raised beef. And so, I want to compare apples to apples — or apples to oranges, however you might look at it — and as they go to scale in the marketplace, they'll have to prove that burden in the environmental footprint, and then we'll see, but I really think the beef cow can compete and has a great story to tell and is an important part of our environmental stewardship and our sustainability story, as far as a planet and a human race.

 

David:            You've mentioned that there's a little bit of controversy over the use of the words “meat” and “beef”. Some of these products, when they come to market, they may want to call them burgers or meat or beef, or meatless, whatever — so where does that stand? Is it a regulatory issue? Is it controversial?

 

Amanda:        There are several states across the country that are fighting to protect the nomenclature of meat and beef, and I've got to give props to Kentucky; the governor just signed a proclamation declaring it Beef Month for May but also signing a labeling law that would prohibit fake meats from calling themselves “meat” or “beef”. I think that's a great first step in setting those precedents on a state level before it can be federally enforced.

 

                        We're also seeing countries around the world, like Australia, France, the European Union — they're all addressing these meat-labeling rules and what is best and most informative for consumers. To me, it's really misleading to have these alternative products be called “meat” and “beef”.

 

                        Most importantly, beef producers have invested, through the Beef Checkoff Program, a dollar per animal sold to promote beef. So you have everything from the iconic "Beef: It’s what's for dinner" slogan, to research to create new steaks that would add value to the carcass, to educating our consumers about how best to prepare beef, and that investment has earned us a great reputation with our consumers. Beef is beloved, and it's king of the grill, and now, these companies want to take that nomenclature and use it for themselves, so that's really frustrating, and I think that's why the beef industry in general is really active in this fight: because beef is beef, period, and its name shouldn't be slapped on any other product.

 

David:            Let's compare sales of alternative or plant-based proteins to beef. Where does that stand right now?

 

Amanda:        U.S. sales of plant-based meats jumped 42% between March 2016 and March 2019, to a total of $888 million. Meanwhile, traditional meat sales rose just 1% to $85 billion in that same time frame, and that's according to ABC News. Beyond Meat is valued at $5.1 billion, as of today. I just read a story by a guy, and he predicts that that rising star is going to fizz a lot pretty fast, but I think it's a clear indication that retailers and consumers are incredibly excited about, at least, the plant-based protein patties and are willing to try it. I just read a study that one-third of consumers are also willing to try lab proteins, and so it'll be interesting to see what consumer acceptance looks like once they get to try it, if they like it and, again, if beef can hang on to the center of the dinner plate.

 

David:            So, it's early days, still.

 

Amanda:        Yes.

 

David:            We'll see what happens, right?

 

Amanda:        Yeah. I think the plant-based proteins, if you look at their ingredient list, it's a mile long, and it's essentially just a processed food; it's not a whole, nourishing food like beef is, a complete protein like beef would be. So, for me, it's a little interesting to see what types of consumers are loving this product. Are they the types that are really interested about health and nutrition? Are they buying it out of guilt or fear about the environment or about animal welfare? And, if so, how do we address some of the concerns that they might have about traditional beef and get them back to eating beef as a protein choice in between those hamburger buns.

 

David:            All right. Well, thank you, Amanda. It was a great conversation and I appreciate your time.

 

Amanda:        Thanks for having me. I was thrilled to be able to share that Alltech stage with such talented speakers (at ONE: The Alltech Ideas Conference), and it's just a great event to be a part of.

 

Amanda Radke spoke at ONE: The Alltech Ideas Conference (ONE). Click here to learn about ONE and how you can access innovation on demand.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Image Caption

U.S. sales of plant-based meats increased 42% between 2016 and 2019.

<>Content Author

The many benefits of adding yeast cultures to creep feeds

Submitted by lkeyser on Mon, 08/12/2019 - 16:12

There are several opportunities to increase both feed efficiency and weight gain with creep feeds. Just as cattle genetics and management practices have advanced over the last several generations, nutritional knowledge and practices have evolved. This has allowed calves to continually improve, meeting the increasing demands of cattle producers and consumers alike.

Previously, protein and energy were the primary nutrients that nutritionists balanced in nursing calf diets. Now we can add feed additives (specifically yeast and yeast byproducts) and provide bioavailable trace minerals (organically sourced) to further advance the benefits of supplementing young cattle.

Leading the way in yeast technology

Alltech has more than 35 years of experience and is a leader in providing yeast technology based on research from both laboratory and animal production settings. Alltech’s Yea-Sacc® Extra contains a yeast culture specifically selected for their influence on animal performance. Yea-Sacc® Extra provides the nutritional platform needed to enhance fiber digestion and stabilize ruminal function and pH.

Sel-Plex® is Alltech’s proprietary form of selenium-enriched yeast and is the first European Union-approved and U.S. Food and Drug Administration-reviewed form of selenium-enriched yeast. Supported by more than 19 years of research, Sel-Plex is also the most proven form of selenium-enriched yeast. Alltech is currently the world's largest producer of natural selenium.

Providing a competitive advantage

Yeast culture and yeast cell wall components are effective products that have been fed to cattle for years and have been shown to exhibit a variety of beneficial properties that positively impact animal performance and health. Production applications of yeast cultures and yeast cell wall components include use in the diets of both low- and high-stress cattle, inclusion in creep feeds and inclusion in feeds for conventional, natural and organic production systems. Their components have proven beneficial in improving rumen health, stimulating the immune system, protecting against harmful bacteria such as E. coli and Salmonella, and promoting growth without the use of antibiotics.

More specifically, yeast culture stimulates digestive microflora, which in turn positively affects dry matter intake, rumen pH and nutrient digestibility. Yeast culture complements and stimulates the growth of ruminal cellulolytic or fiber-digesting bacteria. This leads to an increase in the rate and efficiency of ruminal fermentation. These microbial populations actively break down feedstuffs and help make more nutrients available to the calf for its growth and immune system. An increase in microbial protein can also be realized due to the stimulation of rumen fermentation and is readily available to calves as an excellent source of dietary protein. Because the animal’s appetite is stimulated, stress is reduced and a more consistent dry matter intake is maintained.

Proven results

Research reveals that daily gain and feed efficiency was improved in 21 out of 23 cattle feeding trials (91 percent response). Approximately 2,500 head of cattle were involved in the trials, and the levels of response were such that the net economic return was approximately 10 cents per head per day on feed.

In pasture situations, by including yeast culture in a free-choice creep feed, it has been shown that increased digestibility results in better forage intake and forage utilization by the animal. A three-year trial at The Ohio State University confirmed that providing yeast culture to grazing beef cattle can produce heavier calves at weaning. Their results indicated that including yeast in cattle diets produced calves that averaged 16.2 pounds heavier weaning weight. Another research facility has reported that there may also be benefits related to feeding yeast culture in rations containing ethanol co-products. The studies indicate yeast culture contains nutritional metabolites that co-products lose during the ethanol process.

Benefits of including yeast in nursing calf diets:

  • Promotes digestion and utilization of nutrients
  • Reduces fluctuation in pH and keeps rumen microbes steadily active, which speeds feed digestion and rumen turnover, allowing greater intake
  • Promotes the growth of fiber-digesting bacteria in the rumen, thereby supporting the rate and extent of forage breakdown
  • Stimulates activity of the bacteria that convert lactic acid to propionic acid
  • Promotes rumen stability, avoiding the wide variations in rumen pH that interfere with fiber digestion and feed intake
  • Provides consistent and highly cost-effective returns through greater performance
  • Optimizes animal performance
  • Supports mineral retention 

Yeast culture inclusion in creep feeds make them more nutritionally complete. If you would like to learn more about yeast, yeast cultures and Sel-Plex, take a look at these videos on alltech.com.

 

References

Alsaied Alnaimy Mostafa Habeeb. Importance of Yeast in Ruminants Feeding on Production and Reproduction. Ecology and Evolutionary Biology. Vol. 2, No. 4, 2017, pp. 49-58. doi: 10.11648/j.eeb.20170204.11.

Alltech. https://www.alltech.com/animal-nutrition/beef-cattle. 2018.

Craig R. Belknap and Grant Crawford. Consider Yeast Culture as a Feed Additive for Growing and Finishing Beef Cattle. Copyright 2008 © Regents of the University of Minnesota.

Paul R. Broadway, Jeffery A. Carroll and Nicole C. Burdick Sanchez. Review Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Microorganisms. ISSN 2076-2607 www.mdpi.com/journal/microorganisms.

D. G. Grieve. Feed intake and growth of cattle fed liquid brewer's yeast. Can. J. Anim. Sci. 59: 89-94.

Kindra Gordon. The Benefits of Yeast Culture and Yeast Cell Wall Components in Beef Cattle. January 25, 2016. Beef Magazine.

Kindra Gordon. Supplemental feed ingredients like flax, seaweed, and yeast culture can help boost cattle health, performance and carcass quality. Sept 17, 2007. Beef Magazine.

 

Download a free poster!

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "1e4fa036-3651-4cf9-9aef-3ccecb7c03d6"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

Including feed additives, such as yeast and yeast byproducts, to your creep feed can further advance the benefits of supplementing young cattle. 

<>Content Author

Modernizing your cowherd mineral program

Submitted by lkeyser on Tue, 08/06/2019 - 09:58

Article reposted with permission from CRYSTALYX®.

For many, fall calving lies in the near future. Have you considered whether your cowherd’s summer mineral program is up to par? Implementing a proper mineral program is essential, as it can help determine the best way to maintain optimal reproduction with early conception rates while also boosting calf health and growth. We only get one calf per cow per year, so if there are any missteps in meeting our cow reproduction and calf growth goals, it will be a long time before corrections or improvements can be made.

During the late summer and into the early fall, forage quality is declining as the cow’s requirements are increasing for fall calving. Delivering minerals during this time is crucial in order to produce a healthy calf and ensure that the cow has what she needs to combat any stressors and to rebreed in time. For spring-calving herds, the period when calves are getting pulled and weaned is when the cow’s nutrient requirements are lowest; however, a proper mineral program is still necessary to provide for both the cow and her developing calf throughout the year.

Summer mineral programs

When considering a mineral program, bags and mineral feeders likely spring to mind, as these options have historically been used often and to good results. You may want to consider, however, thinking a little more deeply about some other summer mineral options that could help you stay on top of your herd’s nutrition program without the fuss and potential losses associated with dry granular mineral delivery. For instance, compared to bagged minerals, there are many inherent benefits provided by low-moisture blocks like CRYSTALYX low-moisture block mineral supplements.

Two of the biggest advantages of CRYSTALYX mineral supplements are their palatability and the uniformity of intake they ensure across all cattle within a pasture. Our research has demonstrated that more than 90% of cattle will frequent a CRYSTALYX mineral supplement, versus the roughly 60% of cattle that frequent an area where bagged minerals are available.

It is an undisputable fact that if your cows don’t eat the vitamin/mineral supplement you provide, they will not be able to capitalize on the additional nutritional benefits offered by that supplement. Reaching 30% more cattle within a herd helps ensure that nearly all of your cattle are receiving the added nutrients that encourage optimal performance. This is, without a doubt, the main reason that producers look to CRYSTALYX to help efficiently deliver their summer minerals.

That is certainly not the end of the list of benefits CRYSTALYX supplements can provide. There are a great deal of manufacturing processes and ingredients involved in creating a weatherized, bagged mineral that won’t blow away in the wind, wash down the creek in the rain or simply turn to stone after a downpour. What better weatherproof mineral could you offer than what already comes with CRYSTALYX?

CRYSTALYX low-moisture blocks are unaffected by wind or rain; cattle will simply slurp down any moisture that accumulates on the surface. And what could be more appealing to cows than a good-old consumption-regulated, low-moisture molasses block? There are a host of different intake limiters, encouragers and regulators associated with bagged vitamin/mineral products — but when cows actually want to consume your vitamin/mineral supplement presented in block form, they become unnecessary, as the nutrition is encased in a highly palatable, uniformly blended, dehydrated molasses block that keeps intake in check.

Let’s not forget how the minerals and vitamins are encased in a dehydrated molasses matrix, which is hugely beneficial, as it separates — and virtually eliminates — the reactivity that often exists between minerals and vitamins. Our observations have consistently revealed almost zero vitamin degradation with CRYSTALYX products when measured for up to and even beyond one year. This is certainly not the case with bagged minerals; harmful oxidative reactions begin to take place once the ingredients are mixed together, eventually destroying the vitamin potency.

One thing to remember when managing intake with CRYSTALYX mineral formulations is that the head count per container must be scaled up compared to the protein formulations. Follow the label recommendations, but generally, more cows per container — such as 40 to 60 head per barrel — should be considered to arrive at a 4-ounce intake. Compare this to our typical recommendation of 20 to 30 head for protein products, which are typically consumed in the 0.5- to 1-pound daily intake range.

Mineral feeders: Who needs them?

Upfront equipment costs are one thing, but continued maintenance expenses are seemingly never-ending. Bulls are always looking for some sort of recreational equipment to rough up, and feeders are common targets. There are plenty of creative feeding methods for providing loose minerals. Some producers make it sort of a puzzle that cows must figure out in order to access the mineral — which can really make you wonder just how many cows are actually courageous or creative enough to put their heads into these feeding stations. CRYSTALYX supplements come with their own container — and if you request that they be provided in the degradable BioBarrel®, you don’t even have to go out and pick them up; they just degrade away into the environment. It doesn’t get much easier or more environmentally responsible than that.

A CRYSTALYX mineral program to fit your needs

If you’re not yet convinced to take a fresh look at how you provide vitamin and mineral supplementation to your cow herd, stop by your nearest CRYSTALYX dealer to get the full scoop on how our mineral products can add value to both your cow herd and calf crop, thereby increasing your operational returns. When technology arrives that can take us light-years ahead, we should adopt it and make it the norm. Providing proper vitamin and mineral delivery on-pasture is as easy as finding the right CRYSTALYX product to meets your cows’ needs.

 

I want to learn more about improving nutrition for my cattle.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Image Caption

Implementing a proper cowherd mineral program is essential, as it can help determine the best way to maintain optimal reproduction with early conception rates while also boosting calf health and growth. We only get one calf per cow per year, so it's vital to ensure your cowherd's summer mineral program is up to par.

 

Take care of your cows and they will take care of you

Submitted by lkeyser on Wed, 07/24/2019 - 10:14

Article reposted with permission from CRYSTALYX®.

Fetal programming, also known as “developmental programming,” has been a hot topic for a number of years now. When we consider fetal programming from a nutritional perspective, we think of the lasting impacts gestational maternal nutrition can have on calves. I have often heard farmers and ranchers say, “If you take care of your cows, they will take care of you,” and this certainly rings true in this instance.

We often think about fetal programming during late gestation. Naturally, we begin thinking about the upcoming calving season after last year’s calves are weaned. We know that nearly 70% of fetal growth occurs during the last trimester — but for a calf to be able to grow at an exponential rate during that time and remain healthy during its postnatal life (which will correlate to increased performance and profitability), giving it a prenatal head start during early gestation will be most beneficial.

Unfortunately, however, maintaining a focus on nutrition often gets put on the back burner during early pregnancy. After all, there’s a lot to keep up with in the summer! Cows and bulls are turned out on grass, we’re busy with breeding, and we get caught up baling forages to feed cows with in the winter. You may think that the cows are doing just fine nutritionally, but they — and their developing calves — might be missing out on more than you realize.

https://ridley-umbraco-media.s3.amazonaws.com/media/1125625/061918-early-gestation-chart.jpg?width=564&height=359

Get with the (fetal) program

Although fetal nutrient requirements are minimal during early and mid-gestation (making up less than 12 percent of the cow’s total requirements), from a production standpoint, gestation begins exactly when the cow’s nutrient requirements are greatest, due to the increased demands of lactation.

The placenta and many vital fetal organs develop during early gestation, which continues up to approximately day 90 in cattle. The placenta is responsible for conveying all of the nutrients and oxygen to the growing and developing calf; it also removes waste products. The placental formation in early gestation is crucial for optimizing vascularity and nutrient transfer to maximize blood flow, which is important for the calf’s overall growth. Research measuring the placenta and studying its effects on gestation has shown that nutrient restriction during early gestation can continue to negatively impact the animal throughout the entirety of gestation, even if the cow is provided with their nutritional requirements during late gestation. The impact of restricting nutrients early on includes smaller placenta sizes and decreased blood flow to the calf (Vonnahme et al., 2007, 2013).

Along with the placenta, the calf’s organs also develop during early pregnancy. Cells are dividing at this time, and this early formation of the organ system is crucial for the calf once it is born. These developing organs — such as the lungs and the gastrointestinal tract — are necessary not only for survival, but also for reproduction and the growth of muscle cells. Studies show that nutrient restriction to the cow during this phase can negatively impact organ development and productivity later in the calf’s life; in other words, restricting the cow also restricts the calf’s genetic potential. Genetic selection happens when the producer is making mating decisions, but you can program the calf during gestation to help increase the profitability of your genetics by providing ideal growing conditions. You have worked too hard with too many generations of your herd to take a step back in calf performance potential by not providing the necessary nutrients during gestation.

In order for these vital organs to develop properly — and to maximize your calves’ genetic potential — make sure your gestating cows don’t run short of critical nutrients, like macro and trace minerals, vitamins and protein. These nutrients generally must be delivered to the cow in forms that go beyond simple pasture forages. An easy way to ensure that these nutrients are provided is through a self-fed supplement, such as CRYSTALYX® Brand Supplements, which are formulated with Alltech’s organic Bioplex®  trace minerals.

A simple way to provide supplementation

As we wrap up the breeding season and get closer to the fall season, pasture conditions and forage quality often begin to decline. We should keep in mind that this can be a stressful time of year not only for us, but also for our animals. Consider what your cows are consuming and think about whether they might benefit from supplementation, beginning now and continuing through early gestation and beyond. CRYSTALYX Brand Supplements are a simple solution to make sure that your cows are consuming the nutrients that both they and the calves by their side and in utero need. 

Let’s face it: the summer months are a busy time for us all. Whether you are getting things done around the farm or ranch, catching up with friends and family, or just trying to stay cool, your cows out on pasture may not be getting as much attention as they need. After all, they can’t take any time off during the critical period of early gestation. Fortunately, you can minimize time and labor — and give yourself peace of mind — by putting out a self-fed CRYSTALYX barrel, which will be available to your cows around the clock. Your cows will essentially be taking care of themselves, and by raising better-performing, more profitable calves, ultimately, they will also be taking care of you.

Fowden, A. L., D. A. Giussani, and A. J. Forhead. 2006. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 21: 29-37.

Vonnahme, K. A., M. J. Zhu, P. P. Borowicz, T. W. Geary, B. W. Hess, L. P. Reynolds, J. S. Caton, J. W. Means, and S. P. Ford. 2007. Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome. J. Anim. Sci. 85: 2464-2472.

Vonnahme, K., C. Lemley, P. Shukla, and S. O’Rourke. 2013. 2011 and 2012. Early Careers Achievement Awards: Placental programming: How the maternal environment can impact placental function. J. Anim. Sci. 91: 2467-2480.

 

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Image Caption

Are you giving your cows the nutrition necessary to contribute to the success of calving and beyond?

<>Content Author

Bryan Sanderson joins Alltech as U.S. beef species manager

Submitted by cewert on Tue, 07/09/2019 - 10:19

[LEXINGTON, Ky.] – Alltech is committed to offering nutritional ingredients and solutions to the beef industry and is pleased to announce that Bryan Sanderson has joined the company as the U.S. beef species manager.

“We are looking forward to having Bryan join Alltech,” said CJ Tanderup, western U.S. business manager for Alltech. “With his wealth of experience in the livestock industry, he will be a great asset to our customers and our internal team.”

Prior to joining Alltech, Sanderson served as the director of agriculture development for the state of South Dakota. In this role, he led a team that provided low-interest financial programs to beginning and expanding ag producers, administered USDA grants, recruited new companies and producers to the state, and acted as a liaison between government and agriculture producers. 

Sanderson is a graduate of South Dakota State University with a degree in animal science. Shaping his career and experience, he has held roles in production agriculture and with other respected agriculture companies; including Land O’Lakes and Cargill Animal Nutrition.

Sanderson, who will be based out of the Alltech South Dakota office in Brookings, can be reached at 605-626-1083 and bryan.sanderson@alltech.com.

 

-Ends-

 

Contact:

Jenn Norrie

Communications Manager, North America

jnorrie@alltech.com; +1-403-863-8547

 

 

Photo Caption (download by copying this link into your browser): https://photos.alltech.com/pf.tlx/titlituyBnW

Bryan Sanderson headshot

Bryan Sanderson has joined Alltech as the U.S. beef species manager.

About Alltech:

Founded in 1980 by Irish entrepreneur and scientist Dr. Pearse Lyons, Alltech is a cutting-edge technology company in a traditional industry, agriculture. Our products improve the health and nutrition of plants and animals, resulting in more nutritious products for people as well as less impact on the environment. 

With expertise in yeast fermentation, solid state fermentation and the sciences of nutrigenomics and metabolomics, Alltech is a leading producer of yeast additives, organic trace minerals, feed ingredients, premix and feed.

Together, with our more than 5,000 talented team members worldwide, we believe in “Working Together for a Planet of Plenty™.” With the adoption of new technologies, the adaptation of better farm management practices and the ingenuity inherent in the human spirit, we believe a world of abundance could be ours.

Alltech is a private, family-owned company, which allows us to adapt quickly to our customers’ needs and stay focused on advanced innovation. Headquartered just outside of Lexington, Kentucky, USA, Alltech has a strong presence in all regions of the world. For further information, visit www.alltech.com/news. Join us in conversation on Facebook, Twitter and LinkedIn.                

<>Premium Content
Off
<>Featured Image
Bryan Sanderson joins Alltech as U.S. beef species manager
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Image Caption

Bryan Sanderson has joined Alltech as the U.S. beef species manager.

Frank Mitloehner: Cattle, climate change and the methane myth

Submitted by ldozier on Tue, 06/25/2019 - 08:03

Dr. Frank Mitloehner has done the math on the livestock industry’s contribution to climate change. He is a professor in the Department of Animal Science at the University of California, Davis, specializing in measurement and mitigation of airborne pollutants from livestock production, including greenhouse gases, VOCs, ammonia, hydrogen sulfide and particulate matter. Dr. Mitloehner joins us for a closer look at the claims against agriculture and what he says is the truth behind cattle production and climate change. 

 

The following is an edited transcript of David Butler's interview with Dr. Frank Mitloehner. Click below to hear the full audio:

David:            I'm here with Dr. Frank Mitloehner. We're going to talk a little bit about the greenhouse gas impact of cattle production — specifically, beef.

 

                        Dr. Mitloehner, this is a very big topic for you. A lot of your research has gone into this, right?

 

Frank:             Yes.

 

David:            Let’s say that you're an average person in America. You've probably heard that beef production contributes to global warming. The story is that cows produce methane, and everybody knows that's true. Methane is a very potent greenhouse gas, and everybody knows that's true. So, the natural conclusion is that cows are a big problem for climate change. It’s not quite that simple, right?

 

Frank:             That's correct. In order to really understand the topic better, I think one has to go a little bit into the chemistry of it, but just a little bit. Methane is really very different from the other greenhouse gases. The three main greenhouse gases we're dealing with are methane, CO2 and nitrous oxide.

 

                        So, how are they different? The last two — the carbon dioxide, or CO2, and the nitrous oxide — they have a very long lifespan. Once they are in the air, they stay there for hundreds, if not thousands, of years. Any kind of CO2 that you have ever put into the air by driving a car is still in the air. The only way that gas goes is upward. The more we emit, the more accumulates in the air. These gases are called stock gases because they always add up; they don't go down.

 

                        Methane is very different. It does not have a lifespan of 1,000 years; it has a lifespan of 10 years. So, after a decade, it's gone. There's a process — and that really makes methane very different from the other gases — there's a process that destroys methane, and that's called hydroxy-oxidation. What that really means is that, if you were to be the owner of a dairy or a beef operation, and let's say you've been in the business for 50 years with 1,000 animals, then, 50 years ago, your thousand animals put out methane. For the first ten years, that methane was new because you just started that business.

 

                        After that, you did not add any new methane to the atmosphere, because anything that's emitted is also being destroyed. After ten years, that gas is gone. All the emission inventories and all the media output that you hear assumes that all the methane that's generated by, let's say, cattle, adds up, but it doesn't. At the rate it's emitted, it's being destroyed. That makes methane very, very different from the other gases. This is critical to know.

 

                        What this means is, if a country like Ireland, New Zealand or the United States keeps their livestock herds steady, then they keep their methane steady. If they keep their methane steady, then they are not increasing global warming. So, do we increase global warming with our livestock herds? The answer to that is no, as long as we don't increase herd sizes.

 

David:            That makes sense. What about the rest of the world, where maybe beef and dairy production is not quite as efficient?

 

Frank:             Well, that's really where the majority of the problem resides. According to the IPCC — the Intergovernmental Panel for Climate Change — developing countries such as India emit about 70 to 80% of global greenhouse gases associated with livestock. For example, in India, there are three times more cattle than in the United States, and they don't even eat them.

 

David:            Wow.

 

Frank:             India alone has more cattle than the United States, the European Union and China combined, but they don't even eat those animals. Those bovines in India that are dairy animals produce an amount of dairy, of milk, that's nominal. It takes about 15 to 20 cows in India to produce the same amount of milk as one cow in the United States. That's why these herds are so enormous.

 

David:            What can we do to make those dairy cattle more efficient?

 

Frank:             Well, what we have to do is pretty straightforward: We have to do the same thing that we have done in countries like the United States or Denmark. For example, in the United States, we used to have 25 million dairy cows back in 1950 — 25 million dairy cows. Today, we only have 9 million dairy cows. We have shrunk the herd drastically. But with this much smaller herd today — with the 9 million — we are producing 60% more milk. That means we have shrunk the carbon footprint of the dairy industry by two-thirds in the United States between 1950 and today.

 

                        The same can be achieved around the world through the installation of a veterinary system, better feeding, better genetics, better reproduction rates. We can do this throughout the world. That doesn't mean that we're exporting the U.S. CAFO (Concentrated Animal Feeding Operation) model throughout the world, but what it does mean is that even basic vaccination and treatment against parasites, improvements in feeding and so on will have a drastic improvement effect on national production rates.

 

David:            While we're talking about different kinds of production systems, let's touch a little bit on the controversy between grain-fed and grass-fed beef and the environmental impact of those two systems.

 

Frank:             Well, what most people don't know is that, for example, here in the United States, all cattle are raised on pasture. Regardless of how they are finished, whether they are grass-finished or corn-finished, they all start out on pasture. When I say “start out,” I mean they live the majority of their lives on pasture. Those animals that are corn-finished are finished in a feedlot and fed corn for the last four months of their life. Prior to that, they were on pasture. Most people, first of all, don't know that.

 

                        Then the controversy erupts over people saying, “Well, the feedlot system must be much more environmentally detrimental.” Actually, it is more complex than that. For example, when it comes to methane, we as scientists were surprised to see that beef animals in a feedlot hardly ruminate. You hardly see any belching going on. The reason why there is no rumination, or very little, going on is because their diet doesn't lend itself to methane production. In feedlots, like it or not, the majority of feed is concentrated, meaning it is a feed base other than roughage that does not lend itself for methane production.

 

                        The methanogens — those methane-forming microbes in the rumen, in the stomach of a beef animal — those methanogens need roughage to produce methane. The more roughage or fiber in the diet, the more methane they will produce. In the feedlot, the amount of roughage in the diet is much lower than it is on grass. As a result, there's much less methane production going on. That is one of the reasons — the substrate in the feed that doesn't lend itself for methane production that is to be blamed for a lower methane output of grain- versus grass-finished animals.

 

                        But the other reason is simply the lifespan. If you have a grain-finished animal, which will go to slaughter around 14 to 16 months of age — let's call that one-and-a-half years — and then they go to slaughter. If you finish an animal on pasture, that animal will be 26 to 30 months of age, so almost twice as old as its grain-finished peer.

 

                        What does that mean? Well, that means that, if an animal lives almost twice as long, then it will have much more time to produce environmental impacts. Let's say it has more time to consume water, it has more time to excrete manure, it has more time to belch and so forth. That cumulatively leads to a situation where a grass-finished animal will have about 25 to 30% more carbon emissions associated with it than a corn-finished peer. That is taking into consideration the fact that a corn-finished animal, of course, eats corn, and that corn was produced someplace and also had environmental impacts. But, all of that taken into consideration, using the life cycle assessment approach, will lead to the result that the corn-finished animal will not have a higher but a lower overall environmental impact.

 

David:            Wow, that's interesting. The deeper that you dive into this topic, the more things, like that, you find out were just more complicated than you would expect based on what you've seen on social media. One of those messages that I can think of that's repeated over and over is that we're using land to feed animals, and we should be using that same land to feed humans; that would be more efficient. But that's another one of those areas that's a little more complicated than that, right?

 

Frank:             Absolutely. This is another issue that people are really confused about. Just imagine all agricultural land in the world. Let's look at what this agricultural land looks like. About two-thirds of all agricultural land in the world is called “marginal land.” Marginal means that either the soil quality is not good enough or there's not enough water to grow crops.

 

                        What do we do with that land? We use it for livestock. To be precise, we use it for ruminant livestock because ruminants are able — like sheep and goats — to use non-human-edible feedstuff, such as grasses and certain legumes, and convert those cellulose-containing feedstuffs into animal source foods, such as meat and milk and so on. Ruminant animals are the ones making use of two-thirds of all agricultural land. Why? Because we cannot use that land for any other purpose, period.

 

                        The remainder — one-third of all agricultural land — is what we refer to as “arable land.” That's the land where you can grow crops — crops for animals and for people. Now, the criticism sometimes is, “Well, why do we use any of that arable land for feed production for animals?” Well, the simple answer is because people like animal-source foods, and animal-source foods are highly nutritious, are very nutrient-dense, and people simply demand it. It’s not an “ivory tower” discussion of, “What's the most efficient use of land, and should only the most efficient food items to grow there?” That's not how humans operate.

 

                        I can tell you, there are different things, for example, that we can drink. We can drink water, but we can also drink wine, or we can drink tea, or we can drink coffee. But there's no reason we drink tea or coffee other than that we like it. There's no nutritional reason behind it. It takes 700 liters [of water] to produce one liter of wine. Isn't that wasteful?

 

David:            Sure.

 

Frank:             I could just as well say, “Let's quench our thirst with water and save a heck of a lot of water to produce wine or coffee or tea.” But guess what? We humans are not just rational and “ivory tower” type of people. We say, “What's the most efficient way of producing what we eat or drink?” But we also do it because of cultural reasons or simply because of pleasure reasons. There's not a reason why you and I would eat chocolate ever other than because we like it.

 

David:            Yeah, that's a very good point. Certainly, when you have a huge problem like climate change — which is a crisis that's already here — and people are discussing how to deal with it, I think there is a lot of wasted time talking about the silver-bullet solution when we need lots of solutions, and we need to make sure that the things that we are doing are things that will work. But ideas like just telling everybody they shouldn't eat meat — that's not very practical. I don't think that it will happen. As you mentioned, you could do the same thing with tea and coffee and wine. It's really no different than saying, “Okay, we just need to have half as many people on the planet.” Just pushing that message is not going to make that happen.

 

                        So, since people that don't want us to engage in animal agriculture have done a fantastic job at spreading the message that meat and dairy are largely responsible for global warming, what can we do to get the message out there that that's not the case, it's more complicated than that, and that we really need to look at the data?

 

Frank:             So that your listeners really get a feel for how significant this issue is — or how insignificant it is, I should say — the EPA (Environmental Protection Agency) of the United States looks at all sources of greenhouse gases. According to the EPA, all those sources consuming fossil fuels — such as transportation, power production and use, the cement industry and so on — combined are responsible for 80% of all greenhouse gases in this country. All of livestock and feed production in the United States combined are responsible for 3.9%.

 

                        One of the big issues is that people in animal agriculture try to appease that 1 or 2% of the fringe that make all this noise, and they completely forget the 98% that actually like animal-source foods and that have high confidence in that food being produced in a humane and a responsible fashion. We need to stop doing that; we will never appease the fringe. You will never appease those people shouting for meat tax and propositions and so forth. We need to make sure that we open up to a public that, increasingly often now, wants to know where their food comes from and that we open ourselves up and talk to them about how it's produced and why.

 

                        That has not happened in the past. That is a big black eye animal agriculture has, and rightfully so, because you cannot sell something that people have an emotional relationship with, which is food. When people ask, "How is this food produced?" you cannot say, "No comment." There's no reason for us to say that, but there's every reason in the world to explain why we do what we do, because we do it exceptionally well.

 

                        Now, you just mentioned the comparison of food versus other activities. I'll just give you one example so that your listeners understand how overblown a lot of the frenzy is that they're listening to right now. Assuming that you were an omnivore right now, let's assume you were to go vegan for the next year, not eat any animal-based foods. Then that would save 0.8 tons of greenhouse gases — 0.8 tons. If you were to fly from here from the United States to Europe and back, per passenger, that equates to 1.6 tons. So, to change your diet from omnivore to vegan for one year is half the impact as one transatlantic flight. That tells you what you should think about the hype that's coming your way as a citizen by those people who tried to work through the anti-animal agriculture agenda.

 

David:            Wow, that's amazing. When you watch some of the documentaries on this topic, the message is very much that the only thing that you can do that will make an impact is to stop eating meat and dairy. When you look at the data, that's just not really the case.

 

Frank:             Well, the same people who are saying that today said ten years ago that we should stop eating meat because of ethical reasons, because they don't agree that animals should be in bonds, and then they looked at other means to get people to stop eating meat and consume dairy and eggs. None of that stuck — but the carbon footprint discussion does stick. Many people in animal agriculture just haven't really spent enough attention on that very topic, and now they see, this is more serious than we originally thought. It is high time now to really take this seriously, to take consumers' perceptions around this seriously, and to make sure that producers understand that, in order to keep their social license to produce animal-source foods, they need to engage in this topic. They have a great story to tell, but they need to start telling it.

 

David:            I have to confess that, even though I work in agriculture, I'm very concerned about climate change. I'm our sustainability manager here at Alltech. For a long time, I thought this was a valid message, that meat and dairy were worse for climate change than other foods. So, I felt a little guilty every time I ate meat or dairy. I didn't think about it every day, but I thought it was a legitimate thing. So, I was very happy, as I was researching you and preparing for this podcast and learning more about the topics that you talk about — I was excited to find that it was a more complicated story than that. I think it's just very important that we get that message out there to people. So, where can people find out more about what you've written and maybe find you on social media?

 

 

Frank:             About a year ago, I started on social media. Before then, I thought it was silly, but now I know I was silly thinking that. I'm on Twitter. My Twitter handle is GHG — that stands for greenhouse gas — @GHGGuru. That's where you find me for sure. If you are interested in publications that I've published, you will find me on ResearchGate. All you need to do is put in my name, Frank Mitloehner, and you will find the publications that I'm putting out — not all of them in peer-reviewed scientific papers, some of them in other outlets, such as The Conversation or Medium. These are web-based platforms. But the reason why I go onto these platforms, too, is because you reach a lot of listeners or readers that way. In general, when you Google my name or names of people you're interested in, you'll find everything now on the internet.

 

David:            All right. Well, thank you very much, Dr. Mitloehner. It was fantastic talking to you.

 

Frank:             Well, thanks for having me.

 

David:            A pleasure.

 

 

 

Agriculture has the power to solve some of our most challenging environmental problems. We can put carbon back in the soil and forests. We can recycle nutrients and keep them out of our rivers, lakes and oceans. We can generate renewable energy. And, together, we can build a more sustainable world. Learn more about Working Together for a Planet of PlentyTM.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Image Caption

Is cattle production to blame for climate change? According to Dr. Frank Mitloehner, the truth is in the numbers. 

<>Content Author

Dr. Kyle McKinney: The enzyme opportunity

Submitted by ldozier on Mon, 06/17/2019 - 21:51

The following is an edited transcript of Tom Martin's interview with Dr. Kyle McKinney. Click below to hear the full interview. 

Tom:              The food industry has a four-quadrillion-dollar problem. You heard that right. This number represents the losses due to unused or misused nutrients in animals. With hundreds of thousands of acres being dedicated to farmland each year, agriculture is an important force that is continually shaping our world. But could a new enzyme begin to unlock this four-quadrillion-dollar opportunity? Is this the real key to creating a Planet of Plenty™?

 

                       As the global director of Alltech's Alternative Raw Materials and Feed Efficiency platform, Dr. Kyle McKinney is focused on feed efficiency. He earned a Ph.D. in agricultural biotechnology, focusing on the development of microbial fermentation systems to produce complex enzymes that improve feed and nutrition. Dr. McKinney joins us to talk about new opportunities for food and our future. Thanks for joining us, Kyle.

 

Kyle:              Thank you very much.

 

Tom:             Before we talk about the future, where are we today? Where is the state-of-the-art in feed efficiency right now?

 

Kyle:              When we talk about this opportunity, we consider the future of food and feeding the population. This whole concept and idea comes from the fact that, over the next 20 to 30 years, we're going to add two to three billion more people to the population. People say, during that timeframe over the next 30 years, we will have to produce more food in 30 years than we produced in the history of mankind.

 

                       When we read about the future of food, we see the positives and we see the challenges, the opportunities and some downright scary aspects, such as not having enough calories — not having enough food. So, we look at this as an opportunity — an opportunity to utilize technology, specifically an enzyme, to help the animal digest more available nutrients from our fields. I don't look at the doom and gloom. I believe that we will have plenty of food, and I believe that, when we look at our feedstuffs and you look at how much we lose in terms of nutrients and calories now when we're feeding our animals, it's an enormous opportunity — a four-quadrillion-dollar opportunity.

 

Tom:             We're tossing around some enormous numbers here. I mentioned that number: quadrillion. For perspective's sake, that's 1,000-trillion dollars. If you place one quadrillion British pound coins on top of each other, they reach beyond our solar system. That's how much we're talking about. We're talking about four quadrillion dollars in losses due to unused or misused feed in animals. So, the scope and the proportion of this is beyond imagination. When we hear about unused or misused feed, what does that mean, and how does this happen?

 

Kyle:               If you put some context behind that number, we produce about 3 billion tons of grains per year. Much of that goes into feedstuffs to feed our animals. The problem is that we lose about 25 percent, on average, of the available nutrients because of fibrous components in the feeds. I use the terminology of a bird nest that traps nutrients and the animal can't digest.

 

                        So, when we look at and consider 3 billion tons of feed, of grain, and we consider the 25-percent losses, and you look at the calorie levels of all those grains, that's really where we get to in terms of this four quadrillion, which is an enormous number to even consider.

 

Tom:              It is, it is. We hear that there's a new enzyme that could transform this problem into something of an opportunity. What is the new enzyme and how was it identified?

 

Kyle:               Our focus has always been on getting the most out of our diets. To do that, you have to consider that there are lots of components in a diet that trap nutrients — lots of variations of fiber, if we want to go that simple. To break all those fibrous components down, we believe it takes many enzymes.

 

                        We focused on a technology called solid state fermentation. Solid state fermentation is an ancient technology. What we are able to do is utilize a non-GMO organism, a fungus. We grow that fungus on a high-fiber feedstuff, and it produces a whole host of natural enzymes that are designed to break down grains and feedstuffs because we start with that.

 

                        So, our approach is utilizing solid state fermentation to produce an enzyme complex, many enzymes, to work on the many fiber substrates that we have in a diet. We don't focus on just one or two. We're focusing on a dozen or more of these substrates that are trapping nutrients. We can break those down. We see the most benefit in terms of nutrient availability for the animal.

 

Tom:              And is this technology being applied?

 

Kyle:               This technology is being applied. We've been pioneers in this solid state fermentation system. We have a facility in Serdan, Mexico, that produces for Alltech globally. We do research in terms of looking at how we can improve that system. We do research looking at new microorganisms that may give us even better enzyme complexes to focus on and get more and more out of the diet. That's the challenge the industry has, and that's the challenge we pose for ourselves: how do we continue improving the efficiency of those diets? Which means, as we feed more animals to feed the growing public, we've got more grain sources, because we're getting more efficient. That's one way we're approaching this Planet of PlentyTM concept, using this solid state fermentation enzyme technology.

 

Tom:              And in this application, you're actually seeing those results.

 

Kyle:               Absolutely. We see it with our enzyme system. For example, we can improve the digestibility of this grain feedstuff 7 to 8 percent. So, if you take 7 to 8 percent of the amount of calories that we're losing in all of our grains in feedstuff, it's an enormous number. It's going to allow us to feed more animals in the future.

 

Tom:              I know that you spent some time working for Alltech in Costa Rica on a project focused on using the Alltech Crop Science portfolio to control disease and reduce chemical applications. It also allows your team to set up a fermentation lab to evaluate more sustainable microbial solutions for disease control. How has the knowledge gained from that work informed what you're doing now?

 

Kyle:               The tie between those two projects is simply our expertise in fermentation, in microbial fermentation. We learned a lot about producing microorganisms in our systems in Costa Rica that we were able to take to our facilities in Kentucky and our facilities in Mexico and others and be more efficient in how we produce our products. So, the tie there was simply the fact that we went to Costa Rica, we set up a fermentation system, we're very successful in utilizing this type of technology to reduce chemical input. What we gained is knowledge of how to become more efficient in our production models that allowed us to move to different locations that we have production locations in globally.

 

Tom:              Earlier, you referenced population growth in the world. I'm wondering how this new enzyme will factor in supporting a Planet of Plenty.

 

Kyle:               If you look at the numbers, in 2050, there's an expectation that we will require 70 percent more meat, more food — and that's something around 500 million tons more meat in 2050 than we're producing today. That's something around 1 billion more tons of milk than we're producing today.

 

                        In the last 60 years, we haven't had additional acres of land growing grains, so we've accomplished amazing feats in agriculture; with less land, we produced more meat. Moving into the next 30 years, who knows how much more additional land we'll free up for grain production to produce more protein? This SSF enzyme technology and enzyme complex is going to be critical for the simple fact that we don't know that we'll have more acres of land. We probably will find it somewhere. But we've got to get more efficient because we do know one thing: we're going to have to produce more meat and protein to feed the population.

 

Tom:              Kyle, what else are you keeping an eye on in terms of alternative raw materials? In a traditional industry like farming, why is it important to look for new ways of doing things?

 

Kyle:               The hot topics in alternative materials right now are insect proteins. In Kentucky, it's hemp. [Kentucky is] the number one hemp-producing state in the United States. How is that going to play into how we're feeding animals in the future is a key question, and it's our duty to keep an eye on and understand how some of these alternative materials will play a role as we feed animals. At the moment, we're still very traditional corn and soy. But the new technologies, specifically in terms of insect protein and insect meals, are going to be probably the fastest-growing segment in the next five to ten years.

 

 

Tom:              That's fascinating. I've been wondering if Alltech had an interest in hemp because it's so popular in Kentucky (where Alltech is headquartered) and it grows all over the state. Is there actual activity in this area?

 

Kyle:               Our activity began with Alltech Crop Science looking at some of our technologies for improving efficiency. That is a project that's ongoing. But in terms of animal feed and animal nutrition, our researchers are digging into how hemp will play a role. Right now, it's not going into diets, but we have to keep an eye on this and see how that changes and see how it fits into feeding strategies.

 

Tom:              Getting back to insects — also fascinating, and there certainly are plenty of them. But are there particular species that are of interest?

 

Kyle:               The number-one insect used right now is called the black soldier fly. Picking the right insect is all in determining the growth rate of the insect — how much protein is in that fly meal. So, black soldier fly is the number-one insect producer at the moment.

 

Tom:              What would you say are the trends that you're keeping your eye on right now?

 

Kyle:               I think the trends that we're looking at in Alltech really revolve around technology and agriculture. How are we getting more efficient in monitoring animals, feeding animals, observing the nutritional needs of the animals, and what new technologies are going to allow us to do that? So, I think we, internally, have some programs where we're looking at innovation for sensors, for example. But it all gets back to us focusing on how we are improving the nutritional component of that animal and improving profits for our farmers and our growers.

 

Tom:              Dr. Kyle McKinney, Alltech's Alternative Raw Materials and Feed Efficiency platform global director. Thank you so much for joining us.

 

Kyle:               Thank you.

 

 

Dr. Kyle McKinney spoke at ONE: The Alltech Ideas Conference (ONE). Click here to learn about ONE and how you can access innovation on demand. 

 

Click here for more information about the Alltech Enzyme Management Program.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Products

Optigen® joins lineup of Alltech solutions certified by the Carbon Trust to reduce agriculture’s carbon footprint

Submitted by cewert on Wed, 05/15/2019 - 12:04

From precision nutrition that minimizes waste to environmental analytical services, Alltech is helping producers lower their carbon footprint while increasing their profitability

[LEXINGTON, Ky.] – As the feed and food supply chain faces continual pressure to reduce its environmental footprint, global animal health and nutrition company Alltech remains committed to helping the industry tackle this challenge. As part of this commitment, Alltech has announced the addition of its non-protein nitrogen source Optigen® to its Carbon Trust-accredited offerings.

The Carbon Trust has certified that the inclusion of Optigen in a cow’s diet can decrease the global warming potential of that diet and improve nitrogen utilization. The Carbon Trust has validated that the replacement of high-carbon ingredients (such as soya) with Optigen significantly reduces the risk of a high carbon footprint. Optigen is a technology that provides a sustained release of ammonia to rumen microbes at an ideal rate, which helps to avoid periods of excess rumen ammonia, thereby reducing nitrogen excretion.

The Carbon Trust is a global organization that provides independent advice to businesses, governments and institutions on reducing carbon emissions. Earlier this year, Alltech’s flagship brand, Yea-Sacc®, was also validated by the Carbon Trust to reduce methane emissions and nitrogen excretion.

“Relieving the burden of nitrogen excretion on the environment is possible by optimizing rumen function, and Optigen offers a proven way of achieving that,” said Matthew Smith, vice president of Alltech. “This award from the Carbon Trust is another fantastic landmark as we continue to help producers lower their footprint while increasing their profitability.”

 

Measure before you manage

The Alltech® In Vitro Fermentation Model (IFM) is an effective tool for predicting farm- and feed-specific emissions. IFM simulates rumen fermentation and evaluates the digestibility of individual ingredients, compound feed and total mixed rations.  

“By measuring the gas production of diets with IFM, we can calculate how much potential energy will be lost and the expected emissions per animal based on feeding a certain ration,” said Smith.

Through its Alltech E-CO2 service, Alltech is the leading global provider of Carbon Trust-accredited environmental assessments. Assessors gather information from across the entire farm and provide a bespoke report outlining the levels of emissions from each source, along with a total carbon footprint for the farm.

“We help producers understand where their farms fit into the emissions picture and then make recommendations to improve efficiencies,” explained Smith. “Using our assessment tools, we can predict the probable economic benefits as well as the expected reduction in carbon footprint from our suggested added efficiencies, and then we work with farmers to achieve those benefits.”

Find out how Alltech is working together for a Planet of Plenty™ at ONE: The Alltech Ideas Conference, held May 19–21, 2019, in Lexington, Kentucky, USA.

 

-Ends-

 

Contact: press@alltech.com

 

Jenn Norrie

Communications Manager, North America

jnorrie@alltech.com; 403-863-8547

 

Maria Daly

Communications Manager, Europe

mdaly@alltech.com; +353 86 466 9554

 

About Alltech:

Founded in 1980 by Irish entrepreneur and scientist Dr. Pearse Lyons, Alltech discovers and delivers solutions for the sustainable nutrition of plants, animals and people. With expertise in yeast fermentation, solid state fermentation and the science of nutrigenomics, Alltech is a leading producer and processor of yeast additives, organic trace minerals, feed ingredients, premix and feed.

Our guiding ACE principle seeks to develop solutions that are safe for the Animal, Consumer and the Environment. Our more than 5,000 talented team members worldwide put this purpose to work every day for our customers.

Alltech is a family-owned company, which allows us to adapt quickly to emerging customer needs and to stay focused on advanced innovation. Headquartered just outside of Lexington, Kentucky, USA, Alltech has a strong presence in all regions of the world. For further information, visit www.alltech.com/news. Join us in conversation on Facebook, Twitter and LinkedIn.                

 

About the Carbon Trust:

Established in 2001, the Carbon Trust works with businesses, governments and institutions around the world, helping them contribute to, and benefit from, a more sustainable future through carbon reduction, resource efficiency strategies and commercializing low-carbon businesses, systems and technologies.

 

The Carbon Trust:

  • Works with corporates and governments, helping them to align their strategies with climate science and meet the goals of the Paris Agreement.
  • Provides expert advice and assurance, giving investors and financial institutions the confidence that green finance will have genuinely green outcomes.
  • Supports the development of low-carbon technologies and solutions, building the foundations for the energy system of the future.

Headquartered in London, the Carbon Trust has a global team of over 30 nationalities based across five continents. For more information, visit www.carbontrust.com.

<>Premium Content
Off
<>Featured Image
Dairy Cows feeding indoors
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Article Type
<>Image Caption

The Carbon Trust has certified that the inclusion of Optigen in a cow’s diet can decrease the global warming potential of that diet and improve nitrogen utilization.

AGWIRED: ONE: The Alltech Ideas Conference Preview

Submitted by cewert on Mon, 05/13/2019 - 11:54

ONE: The Alltech Ideas Conference (#ONE19) has some big name keynote speakers but the biggest is Dr. Mark Lyons, President and CEO, Alltech. I spoke with Mark to get a preview of this year’s conference. I’ve been attending this annual event since 2007 and it has continued to grow with an expectation of a record attendance this year according to him.

Click here to read the full AgWired article.

Subscribe to Beef Cattle
Loading...