Skip to main content

A new tool to measure yeast efficacy in dairy cows

Submitted by aledford on Tue, 11/23/2021 - 08:08

Yeast supplementation is a common practice to improve the efficiency of feed utilization and performance in dairy cows. It is well-known that supplements containing live yeast can improve rumen fermentation and the digestive process by stabilizing rumen pH and stimulating the growth of beneficial microbial populations. These positive changes can be attributed to growth factors, including peptides, and the effect on the rumen anaerobiosis to create optimal conditions for the rumen microflora.

Good rumen function will ensure optimal feed intake and digestive efficiency in dairy cows, while poor rumen function can negatively impact feed intake, health and overall cow performance. Formulating the ration correctly and understanding how the individual ingredients in the ration work together can help keep the dairy cow’s rumen and digestive system functioning properly.

How can you ensure that good formulations will lead to the expected results?

Published research and decades of use in the field suggest that most dairy diets respond positively to Yea-Sacc®, a yeast culture based on Saccharomyces cerevisiae that stimulates the growth of fiber-digesting and lactic acid-utilizing bacteria in the rumen. These microbial changes directly result in:

  • A stable rumen pH, which is conducive to better fiber digestion and a reduced risk of rumen acidosis
  • Improved feed intake
  • Enhanced milk yield and components

However, not all formulation strategies react the same way. As a result, there may be instances in which supplementation with Yea-Sacc does not yield the expected results.

To quantify the efficacy of Yea-Sacc for improving rumen fermentation and nutrient utilization for specific dairy TMRs, allowing for greater precision when feeding Yea-Sacc, Alltech created the Alltech IFM™: Yea-Sacc® Value Test (YSVT®).

The response of dairy TMRs to Yea-Sacc supplementation may vary depending on the feedstuffs. Formulation models are limited in predicting the effects of non-nutritive feed additives on rumen fermentation, which limits the precision of ration formulation and the prediction of the efficacy of a given additive. A quick lab-based test that evaluates the potential of Yea-Sacc in a particular situation can help improve the nutritive value of a given TMR.

Building on Alltech IFM, an in vitro rumen fermentation model used to characterize feed digestion kinetics, YSVT is a unique approach to rumen fermentation analysis. Standard in vitro rumen simulation techniques are usually conducted over a shorter period spanning 48 to 72 hours of fermentation. As a result, these techniques do not allow for an accurate evaluation of the efficacy of yeast supplements, as the effects of yeast on rumen populations are not readily evident until supplements like Yea-Sacc have been included in the diet for at least 4 to 7 days.

As the animal adapts to the presence of Yea-Sacc in its diet, the rumen microbial population changes to comprise higher concentrations of fiber-digesting and lactate-utilizing bacteria. YSVT utilizes rumen fluid both from animals that have been adapted to Yea-Sacc and their counterparts that are fed the same basal ration without Yea-Sacc. This allows for the adequate adaptation of the rumen microbial populations to Yea-Sacc without the need for long-term incubation in the lab.

The YSVT test measures key fermentation indicators, including:

  • Digestibility
  • Lactic acid concentration
  • Useful energy (i.e., energy produced from the fermentation of carbohydrates)
  • Rumen energy efficiency (i.e., useful energy per pound of feed digested)

To date, more than 200 dairy TMRs have been analyzed using YSVT. More than 93% of the samples showed a positive response to Yea-Sacc supplementation in terms of useful energy and rumen energy efficiency, with an average response of +13%.

"Rumen Energy Efficiency"

In approximately 50% of all samples, the increase in the useful energy released was not correlated with improvements in digestibility. This indicates that Yea-Sacc increases the efficiency by which feed nutrients are converted into useful energy for the animal, most likely through a more efficient and healthier microbiome. The lactic acid response was more variable, with more than 60% of the samples showing decreased concentration, indicating a reduced risk for a lower rumen pH and acidosis.

In conclusion, the YSVT helps nutritionists and producers understand the value of yeast in improving rumen fermentation. As a result, feed additive supplementation strategies can be tailored to maximize the energy produced from rumen fermentation and improve digestive efficiency in dairy cows.  future developments of this tool will focus on better understanding the interaction of ingredients, the nutrient composition of the TMR and the response to Yea-Sacc — and on developing predictive models to quantify the expected animal performance based on the outcome of a given fermentation profile.

 

I would like to learn more about the Yea-Sacc Value Test.

<>Premium Content
Off
<>Featured Image
Digestive efficiency in dairy cows
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "c16414a5-942e-4b92-ab92-ce2ab289a7c0"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products

3 ways to increase milk production while reducing your carbon footprint

Submitted by aledford on Mon, 09/13/2021 - 09:34

In the dairy industry, successfully implementing solutions that “kill two birds with one stone” requires innovation and usable data. Finding ways to reduce the carbon footprint on dairy cattle operations while also maintaining high milk production is just that kind of situation.

It is important to understand that dairy production is on a continuous path of growth. Some insightful data provided by the IFCN shows that global milk production is projected to increase by 35% between 2017 and 2030. This level of growth is promising for the industry but will also present many challenges and raise questions about our ability to provide more with fewer resources while adopting practices that are environmentally sound. To top everything off, all of this must be achieved while also continuing to increase transparency for consumers about how their milk is produced.

The main question is: Can we reduce the carbon footprint of milk while also improving our production and profitability?

Greenhouse gases have been a trending topic among consumers for several years, and this topic is now resonating more with dairy farmers across the world, as new regulations and initiatives are being presented. To achieve reduced emissions, we must look at ways to optimize production — including via nutritional solutions, which will play a very big role as we go forward.

Dairy producers can utilize nutritional solutions as tools for reducing methane emissions from dairy cows, but technologies that offer environmental benefits cannot compromise on animal performance, as doing so would mean requiring more animals to meet the growing demand for food. However, before looking to implement any of these solutions, dairy producers will need to measure their carbon footprint.

TOOL ONE: Alltech E-CO2

To successfully reduce our greenhouse gas emissions, we must first know where these emissions come from. Analytical services, such as Alltech E-CO2, identify and quantify these hotspots through accredited environmental assessments. Over the past 10 years and more than 10,000 assessments, Alltech E-CO2 has found that the two largest sources of emissions on dairy farms are enteric emissions (i.e., methane from the rumen) and feed use. Together, these two sources contribute more than 60% of all emissions on dairy operations. These sources relate to rumen health and an animal’s ability to best maximize the feed it is being fed. By ensuring the production of a healthy and productive cow, we are helping operations improve their production efficiency while also enabling energy to be utilized for milk production and regular body maintenance, rather than being wasted by fighting health challenges. This type of information is critical for identifying targeted solutions that will enhance our methane mitigation strategies.

To successfully reduce a farm’s carbon footprint, we must look beyond one gas in one area and consider the balance of emissions across the entire farm. A lifecycle observation is one way of doing that, and it’s all about identifying opportunities to reduce waste and improve farm efficiency, which will translate to more money for the producer.

Learn more about Alltech E-CO2 here.

Read on to learn more about two nutritional solutions that work to target the areas where there is room for improvement, as identified by Alltech E-CO2.

TOOL TWO: Optigen®

Optigen is a feed ingredient backed by years of robust research data that works to support production efficiency and sustainability. Optigen, a concentrated source of non-protein nitrogen, releases nitrogen into the rumen in a slow-release form. This provides a sustained release of ammonia in the rumen in sync with fermented carbohydrate digestion, thus allowing for efficient microbial protein synthesis in the rumen.  

In order to gather clear evidence that shows how we can use feed strategies to reduce our carbon footprint, the FAO developed a standard guideline for the environmental performance of feed additives in the livestock supply chain. These standards recommend the use of data from meta-analyses and life cycle analyses. Meta-analyses make it possible to combine data from years of multiple studies to arrive at an evidence-based conclusion by using comprehensive statistical procedures. Life-cycle analyses allow us to quantify the greenhouse gas emissions along the entire supply chain or in the production cycle of a particular product. Combining these two approaches demonstrates how feeding technologies can contribute to the reduction of greenhouse gas emissions and/or better sustainability credentials.

"dairy optigen"

Included here is an example of a meta-analysis of Optigen. The data from this meta-analysis indicate that, over the course of around two decades, research has shown that using Optigen is associated with a 23% reduction, on average, of plant protein sources in the diet. Soybean meal, specifically, can be reduced by about 21%, and an increase in feed efficiency of around 3% has also been documented. Additionally, diets that include Optigen and use reduced amounts of plant protein sources have been shown to improve nitrogen utilization efficiency by 4%, leading to a 14% reduction in the total carbon footprint of the diets of animals used in milk production.

 Read the full meta-analysis here.

TOOL 3: Yea-Sacc®

There are some products on the market — like yeast cultures — that can help improve production efficiency while also reducing the carbon footprint of an operation. Yea-Sacc is a yeast culture based on the Saccharomyces cerevisiae strain of yeast. Yea-Sacc modifies rumen activity by supporting a consistent improvement in the growth and activity of lactic acid-utilizing bacteria, which helps stabilize the rumen pH. At the same time, it also works to improve the digestion and utilization of nutrients. Thanks to these types of improvements, cows can absorb more nutrients for higher milk production.

Utilizing a meta-analysis approach once again, a collection of 31 studies has shown that feeding Yea-Sacc to dairy cows can lead to an increased milk yield of 1 kg/head/day, on average, and can reduce the carbon footprint and nitrogen emission intensity by around 3% and 5.4%, respectively. These numbers demonstrate that it is possible for milk production efficiency to increase and for the carbon footprint and nitrogen excretion intensity to decrease simultaneously.

Explore the additional benefits of Yea-Sacc here.

At the beginning of this blog, we posed a question: Can we reduce the carbon footprint of milk while also improving our production and profitability? With proven tools like the ones outlined here, the answer to that question is yes: It is possible to reduce the carbon footprint of dairy production and to improve our economic returns and performance at the same time. Based on the data compiled in various meta-analyses, it is clear that there are feeding solutions on the market that farmers can use to reduce their emissions and increase their productivity and profitability in conjunction with nutritional strategies that will help improve production efficiency in dairy systems.

 

I want to learn more about nutrition for my dairy.

<>Premium Content
Off
<>Featured Image
Dairy milk production
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "2c5ba201-30c0-4669-9dc4-c9711ca1b006"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics
<>Programs and Services
<>Content Author

VanDenAkker Farms: Gene expression is boosting corn silage feed efficiency

Submitted by aledford on Thu, 09/02/2021 - 10:13

While your average person is still snuggled underneath their blankets in the early morning, Corne VanDenAkker can be found in his barn, tending to the task of milking his herd of cows. There, he reflects on his relationship with farming, which is rooted in a tradition going back almost forty years, beginning when his family made the move from their homeland in Holland to their current homestead in Canada. Upon making the choice to continue this farming tradition, VanDenAkker began farming full-time on his own land and tending his herd after earning a degree from the University of Guelph. Since then, he has grown his herd to over 100 head, added milking robots to modernize his operation, and is continuously seeking how to become a better, more efficient and sustainable farmer.

Through his years of experience, VanDenAkker knows the importance of being cognizant of what goes into his dairy cows in terms of what they eat and the balance of nutrients required to maintain his herd health and optimal milk production. However, he was unsure if he would be able to support his herd with the yields from his own fields. 

Everything we grow goes into our cows

“Everything we grow goes into our cows,” VanDenAkker noted when discussing the 250 acres of corn that is farmed and destined for his own silage. “I didn’t know if I could feed them enough to support the milk.”

VanDenAkker has long used Alltech products such as Yea-Sacc and Optigen in his livestock feed, and five years ago, he was introduced to Grain-Set, an Alltech Crop Science product geared toward grain crops. He began applying it on 40 of his silage corn acres, and over the years since, he has seen consistent results at every harvest. 

“Year after year, we are seeing improved cob fill and an increase in the number of bushels we are getting from those fields when compared to the untreated area,” VanDerAkken said, adding that his average increase is more than 10 bushels per acre.

This crop yield increase is formidable, but the data that really impressed VanDenAkker came after he began feeding his Grain-Set-treated corn silage to his cows. 

“They increased their milk production when we switched,” he said. “I saw a trend in the increase but couldn’t be sure (that it was totally related to Grain-Set).” 

Backed by Science

VanDenAkker’s curiosity about the results prompted him to dig deeper into what he was seeing, and he decided to send samples of both his treated and untreated corn silage for analytical testing. The results spoke for themselves: The Alltech Crop Science-treated corn silage showed a 5.8% increase in neutral detergent fiber (NDF) digestibility. This meant that the dairy cows were getting more energy and taking in more nutrients from the feed, allowing them to not only increase their milk production but to also have more balanced rumen health. These improvements help increase farmers’ profitability and make their systems more efficient.       

What is the science behind these results? Simply put: nutrigenomics. Gene expression helps corn silage crops better withstand environmentally stressful conditions, like drought or overly wet soils, and both biotic and abiotic stress. The plants respond by inducing their own resistance to these stressors and improving their own performance.  

Based on these results, VanDenAkker is enthusiastic about his plans to continue using Grain-Set on his silage corn. When asked about the difference he has seen in his cows, VanDenAkker smiled pragmatically and said, “I feed the cows myself, and I can see the results for myself. They are eating better and getting what they need from the feed. I always had good cows, but they are very decent now.”

What is Grain-Set?

Grain-Set is a unique blend of micronutrients and fermentation products and is specifically formulated for cereal, grain, forage and oil crop production.

  • Provides nutrients essential for plant metabolic processes
  • Increases grain weight and yield
  • Optimizes crop uniformity
  • Improves grain fill and quality
  • OMRI-listed for use in organic production

 

Have a question? Contact us!

<>Premium Content
Off
<>Featured Image
vanderakker farms
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "d2b1a74a-d16c-4ea9-b2fd-b17b4c1cfc91"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Crop Science Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics

3 keys to innovative nutrition for puppies and kittens

Submitted by aledford on Fri, 03/26/2021 - 09:11

If your pet food company produces balanced diets for puppies and kittens, you know that it is not always easy to differentiate yourselves from the competition.

With numerous options at the neighborhood pet food store and on the increasingly popular e-commerce sites, new pet parents are often bombarded with decisions. Should they go with raw diets for puppies? Dry or wet food for kittens? High-protein diets? Vitamin and mineral supplements?

Ultimately, you want pet consumers to choose your nutrition programs. Let’s look at three ways to make sure that your puppy and kitten diets stand out on the shelf.

1. Beware of the “high-protein” hype.

Yes, puppies and kittens have nutritional requirements that include high protein and calorie levels, but be wary of oversimplifying this message.

Protein sources are not created equal, and claiming that a food is “high protein” is not as important as the levels of essential amino acids that are present in the diets of young kittens and puppies.

Protein requirements for puppies and kittens are really requirements for higher levels of high-quality protein. Do your best to convey to consumers that your pet food brand contains excellent-quality protein from a traceable source that specifically meets the needs of a puppy or kitten.

Furthermore, taking a step backwards, a growing animal’s body also requires nutrients that support its cells’ ability to produce proteins.

Nutrients such as nucleotides, which are the molecules that make up an animal’s genetic material (DNA and RNA), are in high demand throughout the animal’s life, but never more so than during the growth phase, when the gastrointestinal and immune systems are developing quickly.

Nucleotides are found in high levels in the mother’s milk, but young companion animals still have an increased need for nucleotides, even after weaning. Research has shown that nucleotide supplementation in puppies increases their immune systems’ capacity to respond to dangerous diseases, such as parvovirus.

Arming your pet food with the organic molecules and amino acids that really matter for growth and development in puppies and kittens, such as those found in Alltech’s NUCLEO-SACC™, will deliver real results for your consumers and, ultimately, the pets they love.

2. Make it palatable.

This may seem fairly obvious, but reduced food consumption in growing kittens and puppies can lead to major growth and developmental problems.

It is important to communicate to pet owners that while the desired growth rate for both puppies and kittens is “slow and steady” so as to prevent the over-development of their musculoskeletal systems, young animals will grow the quickest in their first 6 months of life and need to be fed in line with those needs.

Building your puppy and kitten diets with highly palatable ingredients, such as glutamic acid, can help promote feed intake in a controlled manner. Additionally, using a body condition scoring system can help to guide nutrition for kittens and puppies. Teaching pet owners how to use body conditioning can help prevent under- or over-development.

For both dogs and cats, body condition is typically assessed on a scale of 1 to 9, with 1 being severely underweight and 9 being obese. An ideal body condition for cats and dogs is between 4 and 5, where their ribs can be easily felt but not seen and a waistline can clearly be identified.

In growing companion animals, body condition is likely to change more rapidly, and there could very well be some “awkward” growing phases. All is well. The important thing is to keep their body condition in mind so that you can adjust their diet as needed before anything gets too out of whack.

Overall, helping consumers understand that growing pets require a balanced diet that meets their increased nutritional demands without overloading their body systems is key. Designing pet food diets that are palatable and therefore encourage consumption means that consumers are less likely to overfeed an imbalanced ration to compensate for what is missing, and that could have a hugely positive downstream effect on their pets’ long-term health.  

3. Focus on functional nutrients.

Functional nutrients are those that may provide health benefits beyond the basic nutritional requirements. Regardless of what type of pet food your company produces, be sure to include functional nutrients that can assist with young companion animals’ proper growth and development.

One functional nutrient that often goes unmentioned is inositol. Inositol is a sugar that is found naturally in the body. Inositol supports proper nerve and muscle function, in addition to optimal cell membrane development. Because of its role in cell structure, it is important for growing animals to have quality sources of inositol in their diets.

Additionally, ensuring that your young companion animal pet food contains 100% organic trace minerals (including copper, zinc, manganese, iron and selenium) will provide a huge boost to your nutrition program. Trace minerals are especially critical during growth to ensure the proper development of all of the animal’s body tissues. Organic trace minerals have been shown to be absorbed and utilized at higher rates in the body than their inorganic counterparts, which means that development and performance can be improved just by feeding your brand’s diet!

Summary

Ultimately, you care about your pet food diets because you care about the puppies and kittens who will be eating them.

Adding sufficient levels of functional nutrients — such as essential amino acids, nucleotides, inositol and glutamic acid — in addition to high-quality essential trace minerals will make your pet food brand the best it can be while also ensuring incredible results for your customers’ new family members.

 

I want to learn more about pet nutrition.

<>Premium Content
Off
<>Featured Image
Puppy and kitten
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "34900c17-cf14-428b-8f57-9c397e8175da"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Image Caption

Nutrition for puppies and kittens requires different considerations based on the nutritional requirements for growing animals.

<>Content Author

How to read a horse feed tag

Submitted by aledford on Tue, 02/23/2021 - 15:52

As an involved horse owner, no doubt you have spent time carefully selecting a feed to match your horse’s needs.

We are sure that you have read the purpose statement on the feed tag identifying the grain that will best suit your horse’s stage of life. You have likely even studied the guaranteed analysis to determine the feed’s crude protein, crude fat and crude fiber levels.

However, while this is a great start, there is a bigger story to be told from each bag’s feed tag — one that is more interesting than you may realize.

Understanding what the guaranteed analysis tells you

The guaranteed analysis is an excellent place to start when reading the feed tag because this table is all about what a feed company can guarantee is in their horse feed. This is important for maintaining consistency.

If you think about all the different ingredients in a bag of horse feed, including forage and grain products, the reason why these guarantees are important becomes more obvious. Ingredient prices and fluctuations due to the weather, the season and other variables can easily change the composition of a bag of feed.

Since rapid diet changes are not ideal for equine gut health, feed companies guarantee that certain nutrient levels (typically in a range, with a minimum and a maximum level) will be included in each bag.

The guaranteed analysis also guarantees that the nutrient levels meet the requirements established by the National Research Council and the Association of American Feed Control Officials (AAFCO). For horses, guaranteed analysis requirements include:

  • Crude protein
  • Crude fiber
  • Crude fat
  • Acid detergent fiber
  • Neutral detergent fiber
  • Calcium
  • Phosphorus
  • Copper
  • Zinc
  • Selenium
  • Vitamin A

The guaranteed analysis on many horse feeds will also include lysine, which is the number-one limiting amino acid for horses. Sugar and dietary starch levels are also required to be guaranteed if a horse feed is marketed with any carbohydrate claims.

While each feed’s guaranteed analysis will differ, many share similar ranges of nutrients to meet a horse’s particular stage of life.

So, if many guaranteed analyses look similar, how does anyone manage to choose the best horse feed? As it turns out, there is quite a bit of information that cannot be found on the tag’s guaranteed analysis alone.

Read the complete ingredient list

The second piece to this puzzle involves reading the entire ingredient list on the feed tag. While this sounds boring — and sometimes daunting! — it can actually be quite eye-opening.

Here are a few things to look for:

  • Organic vs. inorganic trace minerals
  • Organic vs. inorganic selenium
  • Any bonus ingredients, such as added probiotics for horses

Decoding minerals

Minerals are the backbone (literally!) of the horse’s body, making up every organ, tissue and cell. They play a role in every single body system, from skeletal and muscular development to nervous system function and hair and hoof health.

While only present in very small quantities in a bag of feed, they are crucially important for your horse’s overall performance.

Trace minerals make up a very tiny percentage of a horse’s daily intake, which is why their bioavailability is so important. Bioavailability has to do with the rate in which they are absorbed AND utilized in the body.

Organic trace minerals (e.g., zinc, copper, cobalt, manganese) are both absorbed at higher levels and are more readily utilized by the horse because they are presented in a form that mimics the form in which minerals are found in nature.

On the feed tag, organic minerals will be listed as the mineral name, followed by the word “proteinate,” “methionine” or “amino acid complex.”

You can easily spot inorganic minerals because they will be listed as the mineral name followed by the word “oxide” or “sulfate.” For instance, the ingredient “zinc oxide” is an inorganic version, which is both cheaper and less conducive for optimal horse health and performance.

Read the feed tag to check the feed’s trace mineral status. Ideally, choose a feed that contains 100% organic zinc, copper, cobalt and manganese.

The selenium connection 

Selenium is also considered a trace mineral, and in horses, it is especially noteworthy because too much — or too little — can be detrimental and even fatal.

Selenium is a highly important mineral in the antioxidant pathway, which is why it is crucial for recovery, endurance and metabolism.

Inorganic selenium is easy to spot on feed tags and will be listed as “sodium selenite.”

Organic selenium, on the other hand, will be listed as “selenium yeast.”

Be careful: Some feeds use a mix of both types of selenium. Choose feeds that contain only 100% selenium yeast for best results.

Ingredients to support gut health for horses

Your final task in reading the ingredient list on the horse feed tag is to check for any bonuses. Yes, organic minerals should be non-negotiable, but it is possible for your horse to get even more out of its feed! Think of this like the prize at the bottom of the Cracker Jack box.

One example is added probiotics for horses. However, be careful how you interpret these, because not all probiotic supplements, or good gut bacteria, are created equal. You can always call the feed company to clarify how they source and add probiotics into their feeds to ensure their viability and efficacy.

Look on the feed tag for ingredients such as “yeast culture,” “hydrolyzed yeast,” “dried brewer’s yeast” or any specific strain of probiotic bacteria. These ingredients can increase your horse’s ability to fully digest and utilize the feed — thanks to beneficial bacteria — while also potentially saving you from having to purchase additional equine supplements.

A final word

While there is a lot more information that you can glean from a horse feed tag, start by looking for these three pieces of information: trace minerals (zinc, copper, cobalt, manganese), selenium and any added ingredients that support gut health in horses.

The guaranteed analysis is a good start, but it does not tell you anything about the quality or forms in which these very important nutrients are included.

Start reading the feed tag ingredient list, and do not hesitate to call the feed company to ask more specific questions. Nutrition is the basis of every animal’s quality of life. Take it seriously and you will absolutely see a difference in your horse’s health and performance.

I want to learn more about nutrition for my horses.

<>Premium Content
Off
<>Featured Image
Feed bag
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "0db1e6e4-d108-45b2-b266-6a44d9844fb5"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Image Caption

Nutrition is the basis of every animal's life. Learn how to read a horse feed tag to provide your horse with the highest quality nutrients, from minerals to probiotics.

<>Content Author

5 safety precautions for mare and foal

Submitted by lkeyser on Thu, 01/07/2021 - 14:12

If you have ever been involved in breeding mares, then you already know how much work, time and energy is put into ensuring that each broodmare births a healthy foal.

In most cases, a substantial amount of money has been spent on breeding and stud fees, veterinary expenses and a quality nutrition program. Additionally, each mare is carefully monitored daily, as those involved patiently wait almost an entire year for the foal’s arrival.

If you and your mare have made it to the homestretch of the last trimester, congratulations! It is our sincere hope that you will soon welcome a healthy new foal. However, if this is not your first “rodeo,” you already know that the real work of breeding season is only just beginning.

The last few months leading up to foaling can be an intense time for your mare, as she moves into a breeding stall, adapts to increased feed requirements and deals with the stress associated with rapidly changing hormones. Now, more than ever, your mare is at a higher risk for health challenges like colic and ulcers.

So, how can you ensure that your mare — who has no doubt been treated like a queen for the last year — continues to stay happy and balanced so that she can raise a healthy foal?

1. Maintain the recommended vaccination and deworming schedules.

The newborn foal derives his immediate immunity from the mare’s colostrum, which means that keeping her up to date on vaccinations is imperative for the health of both mare and foal. You will already be vaccinating the mare throughout her pregnancy, but one month prior to foaling, the mare should receive additional vaccinations. Recommendations may vary by region, so be sure to discuss them with your vet ahead of time.

Likewise, you have already been following deworming protocols, but pregnant mares should also be dewormed again, both prior to and a few days after foaling to reduce the risk of parasite transmission. Speak to your veterinarian to establish a plan that is right for you and your breeding operation.

2. Prepare the foaling stall.

Move your mare into her foaling stall 4 to 6 weeks prior to her due date. If your broodmare has been living the high life out on pasture, give her plenty of time to adjust to her new environment to minimize stress. The foaling stall should be a minimum of 14’ x 14’ and should be clean and protected from inclement weather. The foaling stall should be bedded with straw 1 to 2 days prior to the due date (or when the mare is showing signs of impending foaling).

Straw is the ideal bedding choice for foaling since shavings are abrasive and can sometimes be sucked into the mare’s reproductive tract during birth, which may result in uterine infections and other problems. Once the birth process is complete, transitioning back to shavings is acceptable and is often beneficial for increased absorption of urine.

3. Focus on nutrition.

Not only do nutrient requirements increase during a mare’s third trimester, but they are also at their highest ever during lactation. To maintain the mare’s body condition and prepare her digestive tract for lactation, slowly and safely begin to increase her feed during the end of the second trimester or at the beginning of the third trimester. It is best to work with an equine nutritionist and veterinarian to ensure that your mare is receiving the appropriate levels of all required nutrients, including minerals and vitamins, which are vital for growing horses, too.

Additionally, during the last trimester and after foaling, the mare goes through more changes than usual. She is often moved to a new living situation, traveling to the vet, must give birth and is ultimately caring for a newborn foal. These changes are undoubtedly stressful and may negatively impact her gut microbiome.

Watch for any signs of colic in pregnant mares and consider supplementing with research-backed probiotics to protect your mare and mitigate any potential trouble.

4. Monitor the mare closely.

Once the mare has been moved into a foaling stall, hone your observation skills. While each mare is different, they often display signs prior to foaling, including:

  • Waxing of the teats (1 to 4 days before foaling)
  • The udder area filling with milk (2 to 4 weeks before foaling)
  • Relaxation of the vulva and tailhead
  • Restlessness or anxiousness
  • Pacing
  • Lying down and getting back up often or excessively

While there are always surprises, most mares will exhibit one or more of these signs. It is best to be present for the birth of the foal in case complications arise, so monitor as closely as possible. You may also consider investing in a foaling monitor to assist you. 

5. Ensure that the newborn foal receives the proper colostrum levels.

Once the foal is born, the first 24 hours of life are critically important to future health and wellness.

Foals are not born with a functioning immune system and require immediate immune assistance from the mare’s colostrum, or the first milk.

A foal’s digestive tract is only able to absorb the life-saving antibodies from colostrum for the first 8 to 12 hours after birth. If any issues arise with nursing, such as the mare not producing adequate colostrum or the foal being unable to nurse, contact your veterinarian as soon as possible, as failure of passive transfer can be fatal.

Luckily, most broodmares foal without complications, just as nature intended. However, these five safety precautions will help you support your mare and foal during these vulnerable stages of their lives. And remember, supporting your mare’s gut health can help prevent digestive complications associated with stress. That way, your mare can focus on her most important job at this time: raising a healthy foal.

 

I would like to learn more about equine nutrition.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '0db1e6e4-d108-45b2-b266-6a44d9844fb5'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

Optimize your breeding operation and protect both mare and foal in 5 easy steps.

<>Content Author

Prebiotics, probiotics and postbiotics for pets— what’s the difference?

Submitted by aledford on Mon, 01/04/2021 - 08:28

While prebiotics and probiotics have been key additives in the pet food industry for several years now, the innovation of postbiotics seems to be a gut health game changer.

And while it may seem confusing to add a third gut health moderator to the mix, pet owners are more concerned with boosting their animals’ immune systems than ever before, warranting new technologies to improve pet gastrointestinal (GI) health.

As research grows in the field of postbiotics, it is safe to say that the newest member of the gut health family is here to stay, completing the holy trinity of the microbiome.

What are postbiotics?

Postbiotics are functional, metabolic by-products of gut fermentation. In other words, probiotics (i.e., the good bacteria in your gut) digest and utilize prebiotics (i.e., bacteria food), and the end result of that interaction is the release of postbiotics into the gut environment.

The name says it all: Postbiotics are “biotics” — a.k.a living organisms — that are produced “post,” or after, gut microbe interactions.

Postbiotics include compounds such as:

  • Short-chain fatty acids
  • Enzymes
  • Vitamins
  • Microbial cell fractions
  • Organic acids

These compounds act in health-promoting ways, many of which have yet to be discovered.

In the pet digestive tract, the most notable postbiotics include acetate, propionate and butyrate. These three substances are classified as short-chain fatty acids, which are important sources of energy for the probiotic bacteria themselves, as well as for the epithelial cells that make up the gut lining.

Short-chain fatty acids are important because they work to optimize motility within the gastrointestinal tract and reduce inflammation, which is important for the prevention of any acute or chronic digestive condition. 

The pet gut microbiome

Research continues to find that the gut microbiome — in both humans and pets — is more complex than we originally thought.

Not only does the gastrointestinal tract play a role in virtually every function and system in the body, it also differs between individuals. The microbiome is dynamic and can change dramatically due to:

  • Diet
  • Stress level
  • Age
  • History of medication use

The gut microbiome is almost like an internal fingerprint, which means that digestive supplements will impact each animal in slightly varying ways.

That being said, research has found that the gut microbiomes of dogs and cats are very similar in composition and makeup — unless, of course, the animal is ill (Wernimont et al., 2020).

In dogs and cats with digestive disorders, such as chronic enteropathy and inflammatory bowel disease, the makeup of the gut microbiome has been shown to be significantly different in both its bacterial diversity and richness than the microbiomes of healthy pets (Minamoto et al., 2019; Garraway et al., 2018). 

For preventative reasons, probiotics are increasingly included in pet food ingredient lists and have been shown to assist in altering the populations of bacteria in the gut, shifting the GI tract from too many pathogenic bacteria to an abundance of good gut bacteria.

While probiotics are beneficial, their use can be controversial since probiotics are living organisms. This means that, from a technical standpoint, heat, food processing and storage limitations all pose significant challenges to the viability and stability of probiotics.

Prebiotics are selective ingredients that stimulate the growth of certain bacteria and, as a result, promote gut health. They are broad in scope, but the key here is that prebiotics are not alive, so they are less of a concern in terms of efficacy.

To put it more simply, pro- and prebiotics focus on altering the composition of the gut microbiome to prevent disease, while postbiotics are used for altering the function of the microbiome for overall good gut health.

Why use postbiotics in dog and cat food?

As research continues, what we know so far is that postbiotics positively affect signaling pathways within the GI tract. As metabolites, they interact with the bacteria in the gut, the gut itself and other body systems to trigger the immune system and promote whole body anti-inflammatory responses.

While the exact mechanisms through which postbiotics work have yet to be fully revealed, what is currently known about their wide range of immunomodulatory effects is good reason to include them in pet food (Wegh et al., 2019).

In summary

Postbiotics are heat-stable metabolites that deliver benefits straight to the GI tract.

All good things happen in threes! Protecting any dog’s or cat’s immune system and overall health is simple with the combination of research-backed probiotics, prebiotics and postbiotics.

 

I want to learn more about pet nutrition.

<>Premium Content
Off
<>Featured Image
dog and cat eating
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "34900c17-cf14-428b-8f57-9c397e8175da"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Image Caption

The innovation of postbiotics completes the holy trinity of ingredients to support the pet gut microbiome.

<>Content Author

Salmonella and your backyard flock

Submitted by lkeyser on Wed, 09/25/2019 - 16:58

According to the Centers for Disease Control and Prevention (CDC), Salmonella is the cause of an estimated 1 million food-borne illnesses in the United States every year, including 19,000 hospitalizations and more than 300 deaths. The most common symptoms of a Salmonella infection are diarrhea, fever and abdominal cramps. Serious Salmonella infections are more likely to manifest in those who are under 5 years old or are over 65 years old, or in those with weakened immune systems (e.g., diabetics or cancer patients). Although illness from Salmonella is often the result of improper food preparation or several other factors, poultry producers and backyard flock owners can help reduce consumer risk through good management practices.

Potential sources of bacterial contamination include: 

  • Wild birds/pests (e.g., beetles, flies or rodents) 
  • Water 
  • Visitors 
  • Hygiene 

In poultry production, there are eight key areas that must be given attention in order to reduce bad bacterial contamination on-farm and aid in the prevention of Salmonella.

1. Clean facilities and dedication to biosecurity:  Residual contamination from previous flocks is a common cause of Salmonella in birds. Cleaning areas that birds often touch (e.g., drinking and feed containers) or frequent (e.g., the coop) before the birds arrive and after they leave can help reduce the prevalence of Salmonella. Effective biosecurity and pest control are also key to avoiding contamination in the coop. 

2. Feed:  Contaminated grains and feed ingredients can increase the risk of Salmonella in the final feed. Use heat-pelleted feed, and source feed from mills that maintain stringent quality standards. 

3. Water management:  Water management is a crucial part of any Salmonella control program for poultry, since water can serve as a medium for the organism to spread from bird to bird. Chlorination, as well as the use of organic acids in drinking water, can help to reduce Salmonella levels in the flock. 

4. Dust:  Like water, dust can also foster the spread of Salmonella. Try to keep dust levels in and around the coop below 3 milligrams per cubic meter. 

5. Litter and manure management:  Poultry litter and manure with high moisture and pH levels allow Salmonella to thrive. Managing the moisture and pH of the litter and manure can be effective ways to prevent it from spreading. 

6. Managing gut flora: Establishing and maintaining proper gut flora soon after hatching is critical for mitigating Salmonella contamination. Programs that include the use of probiotics, organic acids, enzymes and yeast technologies have proven effective at maintaining optimal gut health. Several Alltech products that can support gut health — including Sel-Plex®, Bioplex®, Allzyme® ;SSF, Bio-Mos®, Yea-Sacc® and Integral® A+ — are incorporated into all Hubbard Premium Quality poultry feeds.

7. Coccidiosis: Intestinal challenges caused by poor gastrointestinal integrity can have a major impact on Salmonella levels in broilers. As such, strong coccidiosis management should be part of every Salmonella control program. 

8. Vaccination: Especially at the breeder level, the use of vaccines has the potential to reduce the prevalence of Salmonella among day-old chicks. You should only purchase chicks from a reputable source. While vaccines can be applied to backyard poultry, a poultry veterinarian should be consulted to design a suitable program for your birds. 


Cleaning and personal hygiene for your safety 

People can get sick from eating Salmonella-infected meat or eggs or by touching infected poultry or housing. Birds can carry Salmonella but show no symptoms or signs of illness. Fortunately, however, there are several factors that can boost protection: 

  • Always wash your hands with soap and water (or use hand sanitizer) immediately after touching birds, their housing, eggs or meat. Require visitors to do the same. 
  • Do not allow backyard poultry inside your home, especially where food or drink is prepared, served or stored. 
  • Wear a specific pair of shoes when taking care of or visiting birds that you do not wear elsewhere. Leave this footwear outside and request that visitors to do the same. Rubber boots are a popular option. 
  • Do not eat or drink where poultry live or roam. 
  • Do not kiss or snuggle backyard poultry and then touch your face or mouth. 
  • When cleaning the equipment or materials you use to raise or care for your birds, do so outdoors, not inside.
  • Any individuals with potentially weakened immune systems should not touch the birds.
  • Source young birds from government-inspected hatcheries or reputable sources that have a bird health plan.
  • Maintain a clean coop and collect eggs often. 
  • Clean dirty eggs with fine sandpaper, a brush or cloth — but DO NOT wash eggs with cold water, as this can pull Salmonella into the egg.
  • Refrigerate eggs after collecting them and cook them thoroughly before serving.

To expand on the CDC statements regarding Salmonella in backyard flocks, many of these precautions should also be applied when going to a feed or retail store that offers baby chickens, turkeys and/or ducks for purchase. Many stores are now enclosing the birds in an effort to discourage handling, but it is still a good idea to wash and/or sanitize your hands prior to leaving the store.

Additionally, take extra precautions when cooking or handling raw chicken. Try to limit the exposure of raw chicken to temperatures above 40 degrees Fahrenheit (e.g., leaving raw chicken out on the kitchen counter). Always cook poultry thoroughly — use a meat thermometer to ensure that the proper temperature is met — and disinfect surfaces where meat was stored or prepared. The safe internal temperature for cooked chicken is 165° Fahrenheit (75° Celsius).
 

For more information, please refer to the following articles from the CDC:  

https://www.cdc.gov/features/salmonellapoultry/index.html 

https://www.cdc.gov/salmonella/backyardpoultry-05-19/index.html  

 

I want to learn more about poultry nutrition for my flock.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '7046e5d7-6668-42e6-953d-45ac02f6a192'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Topics
<>Content Author

The many benefits of adding yeast cultures to creep feeds

Submitted by lkeyser on Mon, 08/12/2019 - 16:12

There are several opportunities to increase both feed efficiency and weight gain with creep feeds. Just as cattle genetics and management practices have advanced over the last several generations, nutritional knowledge and practices have evolved. This has allowed calves to continually improve, meeting the increasing demands of cattle producers and consumers alike.

Previously, protein and energy were the primary nutrients that nutritionists balanced in nursing calf diets. Now we can add feed additives (specifically yeast and yeast byproducts) and provide bioavailable trace minerals (organically sourced) to further advance the benefits of supplementing young cattle.

Leading the way in yeast technology

Alltech has more than 35 years of experience and is a leader in providing yeast technology based on research from both laboratory and animal production settings. Alltech’s Yea-Sacc® Extra contains a yeast culture specifically selected for their influence on animal performance. Yea-Sacc® Extra provides the nutritional platform needed to enhance fiber digestion and stabilize ruminal function and pH.

Sel-Plex® is Alltech’s proprietary form of selenium-enriched yeast and is the first European Union-approved and U.S. Food and Drug Administration-reviewed form of selenium-enriched yeast. Supported by more than 19 years of research, Sel-Plex is also the most proven form of selenium-enriched yeast. Alltech is currently the world's largest producer of natural selenium.

Providing a competitive advantage

Yeast culture and yeast cell wall components are effective products that have been fed to cattle for years and have been shown to exhibit a variety of beneficial properties that positively impact animal performance and health. Production applications of yeast cultures and yeast cell wall components include use in the diets of both low- and high-stress cattle, inclusion in creep feeds and inclusion in feeds for conventional, natural and organic production systems. Their components have proven beneficial in improving rumen health, stimulating the immune system, protecting against harmful bacteria such as E. coli and Salmonella, and promoting growth without the use of antibiotics.

More specifically, yeast culture stimulates digestive microflora, which in turn positively affects dry matter intake, rumen pH and nutrient digestibility. Yeast culture complements and stimulates the growth of ruminal cellulolytic or fiber-digesting bacteria. This leads to an increase in the rate and efficiency of ruminal fermentation. These microbial populations actively break down feedstuffs and help make more nutrients available to the calf for its growth and immune system. An increase in microbial protein can also be realized due to the stimulation of rumen fermentation and is readily available to calves as an excellent source of dietary protein. Because the animal’s appetite is stimulated, stress is reduced and a more consistent dry matter intake is maintained.

Proven results

Research reveals that daily gain and feed efficiency was improved in 21 out of 23 cattle feeding trials (91 percent response). Approximately 2,500 head of cattle were involved in the trials, and the levels of response were such that the net economic return was approximately 10 cents per head per day on feed.

In pasture situations, by including yeast culture in a free-choice creep feed, it has been shown that increased digestibility results in better forage intake and forage utilization by the animal. A three-year trial at The Ohio State University confirmed that providing yeast culture to grazing beef cattle can produce heavier calves at weaning. Their results indicated that including yeast in cattle diets produced calves that averaged 16.2 pounds heavier weaning weight. Another research facility has reported that there may also be benefits related to feeding yeast culture in rations containing ethanol co-products. The studies indicate yeast culture contains nutritional metabolites that co-products lose during the ethanol process.

Benefits of including yeast in nursing calf diets:

  • Promotes digestion and utilization of nutrients
  • Reduces fluctuation in pH and keeps rumen microbes steadily active, which speeds feed digestion and rumen turnover, allowing greater intake
  • Promotes the growth of fiber-digesting bacteria in the rumen, thereby supporting the rate and extent of forage breakdown
  • Stimulates activity of the bacteria that convert lactic acid to propionic acid
  • Promotes rumen stability, avoiding the wide variations in rumen pH that interfere with fiber digestion and feed intake
  • Provides consistent and highly cost-effective returns through greater performance
  • Optimizes animal performance
  • Supports mineral retention 

Yeast culture inclusion in creep feeds make them more nutritionally complete. If you would like to learn more about yeast, yeast cultures and Sel-Plex, take a look at these videos on alltech.com.

 

References

Alsaied Alnaimy Mostafa Habeeb. Importance of Yeast in Ruminants Feeding on Production and Reproduction. Ecology and Evolutionary Biology. Vol. 2, No. 4, 2017, pp. 49-58. doi: 10.11648/j.eeb.20170204.11.

Alltech. https://www.alltech.com/animal-nutrition/beef-cattle. 2018.

Craig R. Belknap and Grant Crawford. Consider Yeast Culture as a Feed Additive for Growing and Finishing Beef Cattle. Copyright 2008 © Regents of the University of Minnesota.

Paul R. Broadway, Jeffery A. Carroll and Nicole C. Burdick Sanchez. Review Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Microorganisms. ISSN 2076-2607 www.mdpi.com/journal/microorganisms.

D. G. Grieve. Feed intake and growth of cattle fed liquid brewer's yeast. Can. J. Anim. Sci. 59: 89-94.

Kindra Gordon. The Benefits of Yeast Culture and Yeast Cell Wall Components in Beef Cattle. January 25, 2016. Beef Magazine.

Kindra Gordon. Supplemental feed ingredients like flax, seaweed, and yeast culture can help boost cattle health, performance and carcass quality. Sept 17, 2007. Beef Magazine.

 

Download a free poster!

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "1e4fa036-3651-4cf9-9aef-3ccecb7c03d6"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

Including feed additives, such as yeast and yeast byproducts, to your creep feed can further advance the benefits of supplementing young cattle. 

<>Content Author

Four Tips for Overcoming Wild Yeast Challenges in Forage This Spring

Submitted by lkeyser on Mon, 05/13/2019 - 08:46

Despite the conditions we may currently see when we look outside, spring is here! As temperatures begin to rise and snow begins to melt, we need to keep watch for changes in our stored forages. As many will remember, the corn silage harvest last fall brought with it plenty of challenges. Most dairies have not yet experienced any of the issues that are expected to arise in their silage piles thanks to those harvest challenges — but spring will change that. As temperatures increase, wild yeast will begin to awaken in silages, leading to a decrease in forage stability, as well as the potential for issues with the total mixed ration (TMR) fed to livestock.

Last fall, high yeast levels were found in the fresh corn silage samples collected for the Alltech Harvest Analysis – North America (HANA). I have not seen many stability issues for silages yet, but they will manifest. As the warmer weather awakens the wild yeast, we will start to notice activity in our silages that was not present during the long, cold winter. When wild yeast is active in silage piles, it begins to feed on the energy from the corn silage, decreasing the energy available to livestock. Wild yeast can create many issues for a dairy, from decreasing forage stability to causing rumen upset at feeding. Additionally, the silage will begin to warm, leading to an increased pH and spoilage on the silage face, top and sides of the pile or bunker. This is especially true when Mucor and Penicillium molds are present.

If these changes go unnoticed in the forage storage unit and the silage is fed, symptoms will begin to appear in the barn. Common symptoms of active wild yeast being fed in silage include inconsistent and loose manure, decreased dry matter intake (DMI), a downturn in the farm’s butterfat test and, of course, reduced milk production.

Wild yeast has a negative impact on rumen function and cow performance. When this happens, I am often asked, “What can we do about this?”

Common symptoms of active wild yeast in dairy:

  • Loose, inconsistent manure
  • Decreased butterfat
  • Decreased milk production
  • Decreased dry matter intake

TEST THE FEED

First, evaluate and address the issues and concerns at the silage face. Whether your corn silage is stored in a silo, a bag, a bunker or a drive-over pile doesn’t matter; if the environmental conditions allow for it, wild yeast and spoilage can occur in any storage unit. If you think wild yeast is present, my first suggestion is to test the feed through a local lab, as this will give you clear answers about the levels and the specific types of contamination you are facing.

MANAGE YOUR STORAGE UNIT PROPERLY

The next step is to evaluate the silage face, looking specifically for any visible signs of heating or spoilage. This can be done by the producer and nutritionist, but an Alltech on-farm representative can also help identify any potentially concerning signs by using a thermal imaging camera. If any heating or spoilage is detected, an improvement in face management will be necessary. This can be accomplished by increasing removal rates from the face and keeping the face smooth and clean by using a facer. I have personally seen many producers not using their facer daily in the winter months due to the extreme cold, and while this is understandable, when the weather warms and becomes more spring-like, using a facer will be critical to minimizing the effects of wild yeast and spoilage.

DISCARD SPOILED FEED

Next, do not be afraid to discard suspicious forage and spoiled feed. I understand that producers do not want to be wasteful by throwing away feed every day, but if poor-quality forage is fed to our livestock, their performance will be negatively impacted.

FEED A LIVE YEAST

Lastly, feeding a quality live yeast like YEA-SACC® can help livestock overcome the adverse effects of wild yeast. Yea-Sacc bolsters the rumen by modulating the pH, scavenging oxygen, eliminating stress brought on by the wild yeast strains and enhancing overall rumen function. These benefits keep livestock performance on track and allow the animal to utilize the forages efficiently.

 

I want to learn more about improving nutrition on my dairy.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Crop Science Focus Areas
<>Article Type
<>Products
<>Regions
<>Content Author
Subscribe to Yea-Sacc
Loading...