Skip to main content

Key Trends Shaping the US Pork Industry in 2024

Submitted by amarler on Thu, 02/29/2024 - 14:53

The following blog is a summary of the Ag Future podcast episode with Mark Hulsebus hosted by Tom Martin. Click below to hear the full audio or listen to the episode on Apple PodcastsSpotify or Google Podcasts.

The US pork industry is undergoing dynamic shifts in response to various challenges and opportunities. In a recent podcast episode of Ag Future, Mark Hulsebus, sales and portfolio director of Alltech’s US Pork team, shared valuable insights into the current trends shaping the industry in 2024. Let's dive into the key takeaways from the discussion:

 

1. Production Outlook:

  • Anticipated total commercial pork production in 2024 is approximately 28 billion pounds, reflecting a 2.4% increase from 2023.
  • Despite challenges such as losses and economic instability, industry players are exploring opportunities for change and sustainable growth.

 

2. Domestic and Export Demand:

  • Domestic consumption accounts for over 70% of pork production in the US, underscoring the importance of the domestic market.
  • With inflationary pressures affecting consumers, there's potential for increased domestic demand, especially with high beef prices driving consumers towards alternative protein sources like pork.
  • Additionally, declining pork production in Europe presents export opportunities for US producers to fill the gap in global demand.

 

3. Trade Dynamics and Policy Changes:

  • Efforts to reduce trade barriers and tariffs remain crucial for expanding export markets and ensuring the competitiveness of US pork on the global stage.
  • Continuous advocacy and collaboration among trade organizations, governments, and non-governmental entities are essential for navigating evolving trade dynamics.

 

4. Profitability and Efficiency:

  • Prioritizing profitability over maximum production efficiency is key for sustainable success in the pork industry.
  • Producers should focus on understanding their cost structures, locking in profits when opportunities arise, and embracing continuous improvement initiatives to drive long-term profitability.

 

5. Technological Innovations:

  • Innovations such as Alltech's Triad™ technology offer promising solutions to enhance performance and productivity in the farrowing house.
  • Feedback from users indicates positive outcomes in improving pigs weaned per sow, with careful planning and deployment.

 

6. Collaboration and Partnership Opportunities:

  • Forging partnerships with industry players like Alltech can contribute to profitability through access to innovative technologies, expertise, and resources.
  • Opportunities to connect with Alltech representatives are available through trade shows and industry events like World Pork Expo, and the Alltech website.

 

In conclusion, the US pork industry is navigating a complex landscape characterized by production challenges, shifting demand dynamics, and technological advancements. By embracing change, fostering collaboration, and prioritizing profitability, stakeholders can position themselves for success in 2024 and beyond.


I want to learn more about nutrition for my pig herd. 

<>Premium Content
Off
<>Featured Image
Pork producer feeding pigs
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "60231863-171f-40d3-8aab-9c79cd363ae2"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Topics
<>Image Caption

According to the USDA, the anticipated total commercial pork production in 2024 is approximately 28 billion pounds. That reflects a 2.4% increase from the production levels of 2023.

<>Content Author

Managing the east coast animal feed mycotoxin challenge

Submitted by aledford on Thu, 08/18/2022 - 09:53

Nestled on the banks of the Clyde River, overlooking Vermont’s widely reputed lush, forested hills sits Poulin Grain. Proud to call Vermont home since 1932, this fourth-generation family-owned business offers personalized service — including one-on-one animal nutrition consultations, lab-based forage analysis and customized recommendations — along with the manufacturing and delivery of premium animal feeds. Poulin Grain’s diverse customer base includes livestock producers and animal enthusiasts throughout the eastern U.S. and Canada.

As noted by company president Josh Poulin, the nearly 90-year-old business “[has] always been committed to delivering high-quality animal nutrition products at a fair value, and taking care of [its] people, animals and customers.”  

"Poulin Grain facility"

Based in Newport, Vermont, Poulin Grain serves a wide range of customers throughout the eastern U.S. and Canada, including many dairy producers.

Managing mycotoxins in feed and forage

Poulin Grain maintains a steadfast focus on serving the animal and meeting their requirements, which is why they are consistently exploring new technologies that can help them implement superior quality control and produce animal feeds of only the highest caliber.

The company’s northeastern U.S. location — a region often referred to as “mycotoxin central” — led to them initially building a relationship with Alltech. The two companies worked together to implement a mycotoxin control program at Poulin’s mills while also helping their nutrition teams and customers understand more about this dynamic problem on-farm, which includes a central focus on enhancing forage quality.

Why mycotoxin testing is necessary

A 2021 study from Weaver et al. highlighted the prevalence of these toxic compounds in U.S. corn grain and corn silage by analyzing the results of almost 2,000 grain and forage samples across seven years. Findings showed that the mean numbers of mycotoxins per sample were 4.8 and 5.2 in grain and silage, respectively.

These findings are often replicated in the ongoing testing carried out by Alltech’s 37+® mycotoxin analysis laboratory network. For example, in 2021, over 7,000 tests revealed that an astounding 95% of samples contained two or more mycotoxins.

In recent years, several factors have combined to exacerbate the mycotoxin risk in animal diets worldwide. More extreme weather patterns, such as droughts and floods, are creating extra stress on crops, which is one of the primary predisposing factors for mold and mycotoxin development. Additionally, the shift to no-till crop establishment and reduced crop rotation is leading to a greater buildup of crop residues, which only serves to increase the mycotoxin risk in subsequent crops.

How mycotoxins impact animals

Mycotoxins can be the root cause of numerous problems on-farm. However, some of the more common mycotoxin symptoms include:

  • Digestive disorders, such as diarrhea.
  • Reproductive challenges, such as decreased fertility and abnormal estrous cycles.
  • Reduced animal performance, often linked to reduced feed consumption and nutrient utilization.
  • Compromised health, related to suppressed immunity and increased disease risk.

As demonstrated by the routine mycotoxin analysis mentioned above, the presence of multiple mycotoxins in grains and forages tends to be the norm rather than the exception. This may lead to additional or synergistic effects, further compounding the mycotoxin problem for livestock producers.

Taking a proactive approach to mycotoxin management

Although mycotoxins are often chemically stable enough to survive food and feed processing — meaning it is virtually impossible to eliminate them from the supply chain — there are some key steps that can be taken to enhance control efforts.

John Winchell serves as Alltech’s Northeast U.S. territory sales manager, where he has worked with Poulin Grain for nearly two years. When working through mycotoxin challenges, John has always believed it’s best to take a more proactive approach.

“When you think of mycotoxin management, I think it’s much more than just a product — it’s a program; [one that involves] looking at pre-harvest and post-harvest strategies, and [considering] different things, such as climate, population, and varieties,” John explains. “[This paints] a total picture as opposed to [taking a] reactive [approach].”

Aided by Winchell’s support throughout the crop-growing season, Poulin Grain and their dairy nutrition customers have implemented steps to help enhance forage quality and produce superior quality dairy feeds.

For example, to manage grain and forage quality post-harvest, John introduced Poulin Grain to both the Alltech 37+ mycotoxin analysis and Alltech RAPIREAD®.

Alltech 37+ is a lab-based mycotoxin detection method that can identify up to 54 individual mycotoxins, including those in total mixed rations (TMRs).

Alltech RAPIREAD utilizes a portable testing module to quickly detect six key mycotoxins. It is typically used directly on-farm or in the feed mill due to its ability to deliver quick results, often in less than 15 minutes.

“Working with [Alltech] 37+ to look at the different samples on different commodities and forages has really helped us get closer to where we need to be on forage quality and cow health,” states Winchell, while also highlighting how Poulin Grain were early adopters of Alltech RAPIREAD, thereby allowing mycotoxin control decisions to be activated on the same day that a challenge is identified.

"dairy cow forage quality"

Optimizing dairy forage quality is a key focus area for both Poulin Grain and Alltech.

Maximizing livestock productivity

Poulin Grain is no stranger to adaption and innovation, as noted by general manager and senior vice president Mike Tetreault, “One of the key things for Poulin Grain to continue to be leaders in animal nutrition is we must be innovative. And part of being innovative for us is having the right products, services and technologies [in place].” That is where John Winchell and Alltech come in.

According to Tetreault, “[Winchell] has been a tremendous asset for us — he’s been really committed [to serving] all our customers and covering every area. He’s been a true source of support, education and growth for all our customers and [our] company. I don’t know what we’d do without this Alltech service.”

From starting with a simple introductory webinar to today implementing the latest in mycotoxin detection, Mike feels the Poulin team has now become experts in managing mycotoxins and is far more able to make informed decisions.

What lies ahead

As Poulin Grain’s business continues to grow and develop the ways in which it serves its diverse customer base, Tetreault is excited about what lies ahead.

“When we find problems that really need further investigation, Alltech’s 37+ [program] has been there to support us dramatically for the last year,” he says. “We’ve had several situations where we’ve been able to help and correct management [on-farm]. It’s really been a great run, and I know that going forward, utilizing these Alltech services, products and technologies will [continue to] truly be an asset for Poulin Grain.”

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "c16414a5-942e-4b92-ab92-ce2ab289a7c0"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions

Air quality in pig barns: What are your pigs breathing in?

Submitted by aledford on Thu, 12/09/2021 - 10:48

While swine productivity and efficiency continue to increase, gases and odors from livestock operations persist and have become a severe problem, with social implications for many countries. Swine facilities are intrinsically associated with air pollutants and the emission of gases, such as ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). These gases often have a negative impact on air quality, animal health and quality of life within and beyond these facilities.

Among these gases, ammonia is one of the most widely recognized because of both its prevalence and distinctive effects on animal well-being and pork production but also for its impact on the environment. Ammonia emission is a natural process produced by the anaerobic decomposition of animal waste; however, chronic exposure can lead to health problems and could subsequently affect animal performance, especially in a confined environment. Research published by Koerkamp et al. (1998) suggested that emissions of NH3 from sows and wean and finishing pigs ranged from 22 to 1,298 mg/h/animal. Additionally, environmental ammonia ranged from 5 to 30 ppm in swine confinements. While highly variable, concentrations over 20 ppm of NH3 can adversely impact the health of both workers and animals.

Where does ammonia come from?

Ammonia is released from the urea present in urine through the activity of waste-degrading microbes. Urea is formed by the kidneys and is utilized by the body to excrete nitrogen, which is essential for normal health.

Several management factors can contribute to poor indoor air quality and, subsequently, higher concentrations of ammonia, including damp bedding, lack of ventilation and nutritional factors, like overfeeding protein.

How does ammonia affect pigs?

Ammonia is a toxic gas that, when present in high concentrations, can easily become a chronic problem in the barn. Other documented effects associated with ammonia include tail-biting and respiratory diseases in pigs, but it can also lead to severe problems in human caretakers and can be detrimental for the environment.

Research conducted by Andreasin et al. (1994) suggested that even minimal exposure to ammonia can be harmful. For example, swine exposed to 50 ppm of ammonia for 20 minutes a day on just four occasions experienced reduced performance and decreased live bodyweight gain (between 37 and 90 kg) (Fig. 1) In addition, ammonia can seriously affect respiratory health and delay puberty, even at the low level of 20 ppm (Malayer et al. 1980).

"ammonia in pig performance graph"

Figure 1. Impact of ammonia concentration in swine performance (adapted from Andreasin et al. 1994. IPVS Proc.).

How does ammonia contribute to pollution?

Ammonia is the major alkaline component of the Earth’s atmosphere and can be found in water, soil and air. Ammonia impacts the environment through several different mechanisms, including by influencing air quality, odor, eutrophication, acidification and direct toxicity and also via indirect effects.

Ammonia pollution has a major impact on biodiversity, with nitrogen accumulation affecting the diversity and composition of plant species within affected habitats. Additionally, atmospheric nitrogen deposition has induced adverse effects in forest systems and eutrophication in several estuarine and coastal ecosystems.

How to reduce ammonia emissions in pig barns

A holistic approach is needed to improve indoor air quality in swine barns, from checking ventilation to providing the proper equipment to implementing nutritional strategies and manure management. Here are three areas to focus on for improving ventilation and reducing poor indoor air quality:

  1. Determine that all fans are in working order. Clean fan blades and louvers and ensure that the fan motor and thermostat are in the proper condition.
  2. Check that the curtains close securely, that debris and/or equipment are cleaned up and put away before snowfall, and that the propane tanks are examined for leaks.
  3. Check air inlets and temperatures and test the supplemental heat sources inside of your buildings.

Additionally, many pork producers and animal feeding operations also utilize nutritional strategies and technologies in their feed, such as reducing the amount of crude protein or including Yucca schidigera (YS) plant extract in the diet, which can be used as an additive to consistently reduce adverse gas and odor emissions and decrease ammonia concentrations. Peer-reviewed data has shown that YS can reduce aerial ammonia levels by up to 50%.

Formulated from proprietary extracts of YS, De-Odorase® is a safe way to reduce and maintain low ammonia levels in pig barns. The evaluation of using De-Odorase® in swine housing units to control ammonia began in the early 1990s. Tuck (1991) reported that including De-Odorase® at 120 g per metric ton of finished feed reduced atmospheric ammonia by 50% and 65% during the weaning and growing phases, respectively, representing nearly one-third of the initial level. Colina et al. (2001) reported a reduction of 35% in aerial ammonia in nursery swine units after four weeks of dietary supplementation with De-Odorase (Fig. 2) 

A summary of peer-reviewed research supports the benefits of utilizing De-Odorase®, including:

  • Decreased gases and odors (Ender et al., 1993; Vucemilo et al., 2004).
  • Sustained pig respiratory system function (Monteiro et al., 2010; Vucemilo et al., 2004).
  • Improved animal performance (Gombos, 1991; Ender et al., 1993; Power and Tuck, 1995; Panetta et al., 2006).
  • Better working conditions for stockmen (Cole et al., 1998).

"ammonia in nursery pigs"

 

Figure 2. Aerial ammonia in nursery swine determined by aspiration tubes (Adapted from Colina et al., 2001. J. Anim. Sci.)

Controlling ammonia gas in pig production creates a healthier environment not only for the animal, but also for the producer.

 

I want to learn more about nutrition for my pig herd.

<>Premium Content
Off
<>Featured Image
Air quality in pig barns
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "60231863-171f-40d3-8aab-9c79cd363ae2"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Topics
<>Content Author

5 key factors for the future of aquaculture nutrition

Submitted by aledford on Tue, 11/30/2021 - 08:26

Global aquaculture has come a long way since people first began fish farming. Over the years, improvements in management systems and aquaculture feed mean that we can now produce more food than ever before. However, with the demand for food fish rising alongside a growing global population, the future will see further changes in this industry. Here are some of the current main developments that will define the next steps in aquaculture’s legacy.

Increased application of recirculating aquaculture systems (RAS)

Recirculating aquaculture systems (RAS) are not a new topic. This farming method has been around since the 1980s and used intensively in the Atlantic salmon industry for many years. However, it has taken the rest of the aquaculture industry almost 20 years to embrace it.

There are several reasons why RAS is the future, but the primary reasons are:

  • Sustainability
  • Efficiency

To operate a successful RAS, feed must be optimized to increase palatability, reduce water pollution and allow both the system and the fish perform at their best. As RAS facilities are land-based operations, there is reduced pressure on pond/sea stocks. Also, advancements have been made to recycle existing water in these facilities, preventing a further drain on resources.

Further developments in this area have seen the development of RAS systems for shrimp, revolutionizing shrimp farming by allowing more controlled environments and easing long-term environmental challenges. Furthermore, we are seeing a shift in governmental legislation and movement from cage farming for environmental reasons, such as maintaining freshwater quality and protecting wild fish populations, including aquatic plants and animals. This implies a very strong future for RAS.

Removing fishmeal and fish oil from aquaculture feed

Feed, essentially, provides energy and nutrients to support the development of each species, but the fish has no preference regarding how the energy and nutrients are sourced. The percentage of fishmeal in aquatic diets has significantly reduced since 2000, and the move from fishmeal and fish oil for many fish species is not very far away. Plant proteins and other ingredients can replace the fishmeal component in fish food. However, they are majorly constrained by issues of low digestibility. Formulations must be highly digestible, and each ingredient must add value and enrichment to the diet to impact performance. Utilizing enzymes in aquafeed can help fish and shrimp digest feed better to support a healthy digestive system and help increase cost-efficiency.

Choosing a feed that is right for your farm means you could potentially:

  • Use less feed
  • Improve production
  • Improve output
  • Reduce environmental impact

Unfortunately, there is a hidden risk when increasing the quantity of plant-based raw materials on aquaculture farms. Mycotoxin contamination is known as a silent enemy for producers as it is visibly difficult to detect. Long-term ingestion of feed with low/acute or high exposure levels can be a reason for poor growth and unexplained mortalities on fish farms. Correct management at all relevant production points is crucial in handling this threat. Feed supplements can also help negate the effects of mycotoxins in the digestive tract and prevent them from being absorbed by the body.

Additionally, logistics are increasing at an alarming rate. This provides an opportunity to improve sustainable practices and become less dependent on imports. The quality team at Alltech Coppens has focused on sourcing quality local ingredients and adapting the formulations to suit these conditions and provide the most benefit to the fish.

Advancements in feed formulation, a significant move to net energy formulations

"Aquaculture net energy"

Feed production must be efficient and cost-effective for the producer. To produce a feed that can provide the fish with optimal energy levels for production, understanding the digestibility parameters of each raw material is crucial.

The gross energy is the total energy is available in the feed to the animal. When the animal digests feed, it uses digestible energy. Further energy will be lost due to metabolic processes, and what remains becomes net energy.

The fish can use net energy to grow and maintain its health status. Micronutrients are key to maximizing this growth, but their efficiency can vary. Recent research in the Alltech Coppens Aqua Centre has shown that metabolic energy losses can range from 30–40% if the feed is not correctly formulated, impacting the growth of the fish. Comparing the net energy of different types of feed, as well as considering palatability and sustainability, can help producers choose the best feed for performance.

A healthy gut is the key to success

Achieving optimal health status in fish is one of the main goals for aquaculturists. Disease and/or significant growth reduction will increase costs for the producer. Poor health status can account for some of the biggest losses in the fish farming industry.

At Alltech, we believe that a healthy gut is the key to success. A healthy gut can digest and absorb the maximum amount of nutrients. The intestinal microflora, gut morphology, immune system and nutrient uptake — plus how each of these elements interacts — all play a role in the health and performance of fish and shrimp. Animals in farmed environments also require essential nutrients to meet their basic nutritional needs. A fish’s skin, gut and gills are the primary points of interaction with external environmental factors that can impact its health. These organs must be protected, both internally and externally.

The more robust the animal, the less vulnerable it will be to stress throughout the production cycle, ensuring the highest levels of efficiency.

Potential stress factors to look out for include:

  • The rigors of production
  • Age
  • Quality of the feed
  • Temperature
  • Salinity
  • pH

Each of these can cause an imbalance in the gut, leading to increased disease susceptibility. The subsequent adverse effects on growth rates and immunity can then have negative financial impacts. Protecting their health will provide the most benefit to the farmer.

"Aquaculture stressors"

Sustainability

Providing food security for future generations requires careful management of our present environment. Sustainable aquaculture is the solution; the FAO announced that by 2030, 60% of food fish will come from aquaculture. The environment needs to be considered in every aspect of production. If we truly understand the needs of fish, quantify the different necessary micronutrients and analyze the composition of feces, we can better understand how to improve water quality.

Poor water quality leads to environmental impacts and economic losses that can be avoided by carefully selecting a balanced selection of supplements that support a healthy culture system and environments for the future. RAS environments and the move from marine-based ingredients, as discussed above, have made positive impacts, and all of these will provide access to sustainable marine protein sources for future generations.

 

I want to learn more about aquaculture nutrition.

<>Premium Content
Off
<>Featured Image
aquaculture farming
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "9a2b89e0-455d-49e8-927e-620466728a8d"
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Content Author

A new tool to measure yeast efficacy in dairy cows

Submitted by aledford on Tue, 11/23/2021 - 08:08

Yeast supplementation is a common practice to improve the efficiency of feed utilization and performance in dairy cows. It is well-known that supplements containing live yeast can improve rumen fermentation and the digestive process by stabilizing rumen pH and stimulating the growth of beneficial microbial populations. These positive changes can be attributed to growth factors, including peptides, and the effect on the rumen anaerobiosis to create optimal conditions for the rumen microflora.

Good rumen function will ensure optimal feed intake and digestive efficiency in dairy cows, while poor rumen function can negatively impact feed intake, health and overall cow performance. Formulating the ration correctly and understanding how the individual ingredients in the ration work together can help keep the dairy cow’s rumen and digestive system functioning properly.

How can you ensure that good formulations will lead to the expected results?

Published research and decades of use in the field suggest that most dairy diets respond positively to Yea-Sacc®, a yeast culture based on Saccharomyces cerevisiae that stimulates the growth of fiber-digesting and lactic acid-utilizing bacteria in the rumen. These microbial changes directly result in:

  • A stable rumen pH, which is conducive to better fiber digestion and a reduced risk of rumen acidosis
  • Improved feed intake
  • Enhanced milk yield and components

However, not all formulation strategies react the same way. As a result, there may be instances in which supplementation with Yea-Sacc does not yield the expected results.

To quantify the efficacy of Yea-Sacc for improving rumen fermentation and nutrient utilization for specific dairy TMRs, allowing for greater precision when feeding Yea-Sacc, Alltech created the Alltech IFM™: Yea-Sacc® Value Test (YSVT®).

The response of dairy TMRs to Yea-Sacc supplementation may vary depending on the feedstuffs. Formulation models are limited in predicting the effects of non-nutritive feed additives on rumen fermentation, which limits the precision of ration formulation and the prediction of the efficacy of a given additive. A quick lab-based test that evaluates the potential of Yea-Sacc in a particular situation can help improve the nutritive value of a given TMR.

Building on Alltech IFM, an in vitro rumen fermentation model used to characterize feed digestion kinetics, YSVT is a unique approach to rumen fermentation analysis. Standard in vitro rumen simulation techniques are usually conducted over a shorter period spanning 48 to 72 hours of fermentation. As a result, these techniques do not allow for an accurate evaluation of the efficacy of yeast supplements, as the effects of yeast on rumen populations are not readily evident until supplements like Yea-Sacc have been included in the diet for at least 4 to 7 days.

As the animal adapts to the presence of Yea-Sacc in its diet, the rumen microbial population changes to comprise higher concentrations of fiber-digesting and lactate-utilizing bacteria. YSVT utilizes rumen fluid both from animals that have been adapted to Yea-Sacc and their counterparts that are fed the same basal ration without Yea-Sacc. This allows for the adequate adaptation of the rumen microbial populations to Yea-Sacc without the need for long-term incubation in the lab.

The YSVT test measures key fermentation indicators, including:

  • Digestibility
  • Lactic acid concentration
  • Useful energy (i.e., energy produced from the fermentation of carbohydrates)
  • Rumen energy efficiency (i.e., useful energy per pound of feed digested)

To date, more than 200 dairy TMRs have been analyzed using YSVT. More than 93% of the samples showed a positive response to Yea-Sacc supplementation in terms of useful energy and rumen energy efficiency, with an average response of +13%.

"Rumen Energy Efficiency"

In approximately 50% of all samples, the increase in the useful energy released was not correlated with improvements in digestibility. This indicates that Yea-Sacc increases the efficiency by which feed nutrients are converted into useful energy for the animal, most likely through a more efficient and healthier microbiome. The lactic acid response was more variable, with more than 60% of the samples showing decreased concentration, indicating a reduced risk for a lower rumen pH and acidosis.

In conclusion, the YSVT helps nutritionists and producers understand the value of yeast in improving rumen fermentation. As a result, feed additive supplementation strategies can be tailored to maximize the energy produced from rumen fermentation and improve digestive efficiency in dairy cows.  future developments of this tool will focus on better understanding the interaction of ingredients, the nutrient composition of the TMR and the response to Yea-Sacc — and on developing predictive models to quantify the expected animal performance based on the outcome of a given fermentation profile.

 

I would like to learn more about the Yea-Sacc Value Test.

<>Premium Content
Off
<>Featured Image
Digestive efficiency in dairy cows
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "c16414a5-942e-4b92-ab92-ce2ab289a7c0"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products

Receiving your stocker or feedlot cattle with ease

Submitted by aledford on Mon, 09/13/2021 - 16:16

The receiving period can be a stressful time for cattle. Recently, during the Alltech ONE Ideas Conference, Dr. Carlo Sgoifo Rossi gave a presentation titled “Receiving With Ease: Minimizing Stress During the Adaptation Phase.” Dr. Sgoifo Rossi is currently an associate professor in the department of veterinary science and technology for food safety at the State University of Milan. Utilizing his perspective and knowledge of the European beef production system, Dr. Sgoifo Rossi shared some information about the various considerations related to stress and adaptation that producers should keep in mind when implementing feeding programs and management practices.

When cattle are undergoing a transition like weaning and receiving, they experience stressors, including:

  • Transportation
  • Interactions with other cattle
  • Interactions with humans
  • Changes in nutrition

These stressors can have a major impact on cattle and can lead to such issues as changes in their immunodeficiency, reduced rumen motility, altered nutrient absorption, increased nutrient requirements and an upsurge of mineral excretion by the kidneys.

Receiving stress can lead to BRD

Regarding immune function, one common but highly concerning issue is bovine respiratory disease (BRD), which can strongly affect the performance of cattle. As illustrated in Figure 1, cattle who arrive and are treated for BRD can exhibit a decrease in average daily gains. It is also important to understand that animals who experience BRD often produce meat with lower marbling and quality grades. Considering all of these factors, mitigating BRD is important not only for the animal’s quality of life but for the producer’s bottom line and the consumer’s satisfaction.

Appropriate sanitary conditions make a difference

While the health of newly arriving animals is impacted by their location of origin, it is also greatly affected by the sanitation and management of the receiving location. According to Dr. Sgoifo Rossi, “The type of vaccination, the type of antibiotics used (and) the type of anti-parasitic product can affect the sanitary conditions of our animals.” Dr. Sgoifo Rossi encouraged producers to approach sanitation with an understanding of their specific herd and facilities and posited that, for some beef production systems, the strategy of going “all-in and all-out with cleaning and disinfection” is the best approach.

Nutrition is critical in the cattle business

When talking about management, we must be sure to properly feed and rehydrate the cattle upon arrival. Ensuring that clean drinking water is readily available and being conscious of the arrival diet are both crucial. Feeding the arrival diets in small amounts multiple times a day is recommended, as this will reduce competition among the animals, giving each of them an opportunity to receive adequate amounts of protein and energy. Arriving cattle can sometimes be considered high risk, making this a critical period for helping them recover properly and get back to normal rumen functionality.

Studies have shown that the appropriate arrival diet should have a crude protein and dry matter composition of less than 13%.

“Several studies show that if we improve the crude protein level of adaptation diets or the energy level of adaptation diets, we increase not only the incidence of morbidity but also the severity of morbidity and, consequently, the risk of mortality,” Dr. Sgoifo Rossi said.

Additionally, with the arrival diet typically being richer in forage and higher in fiber, reducing the chop length of the fiber will also reduce the likelihood that animals will sort through the ration. This is important, because sorting can cause cattle to eat too much starch or protein, which can lead to fluctuations in the pH level.

Consider all of the nutritional needs of arriving cattle

Unsurprisingly, it is also important to consider the nutrients available in the arrival diet. Providing new-arrival animals with the proper nutrients will improve their immunity, digestibility, and energy and protein balances.

To recover rumen and immune system functionality in newly arrived cattle, it is important to consider diets that include the following:

  • High levels of digestible fiber
  • Yeast
  • Mannan oligosaccharides (MOS)
  • Slow-release nitrogen
  • Vitamins
  • Minerals

As mentioned previously, the arrival period is so critical for getting cattle right. Vitamins, minerals and other supplements can help improve their feed and can be fundamental in helping these cattle adapt to their new home. In his presentation, Dr. Sgoifo Rossi mentioned that studies have shown that organic zinc and selenium, live yeast and mannan oligosaccharides can be huge players in the reduction of morbidity and mortality in these potentially high-risk cattle.

Too often, producers and nutritionists underestimate the importance of these ingredients, leading to negative results. Dr. Sgoifo Rossi shared a study completed in Italy that examined the mineral status and mineral plasma levels of cattle after arrival. This trial focused on the evaluation of various mineral levels in the blood immediately after arrival. As shown in Figure 2, 83% of new-arrival beef cattle were in a deficient or sub-deficient condition regarding their copper availability, and 30% displayed deficient or sub-deficient zinc availability and reserves.

Weather can be a stressor

Weather can play a significant role in cattle stress, and more thoughtful management practices should be implemented with the weather in mind. Spring, summer and fall are less of a concern when it comes to sanitation management, but winter is a critical period for sanitation. Producers often forget to consider the relationship between temperature and humidity during the winter and how it can lead to cold stress. This can create a potentially dangerous environment for cattle and can result in increased incidences and more severe cases of BVD. As shown in Figure 3, low-temperature, high-humidity environments can create a risk area where sanitation conditions are an issue, leading to a slower adaptation for arriving animals.

As previously mentioned, there are challenges leading up to and during the receiving period that can result in the highest risks of morbidity and mortality. Implementing the proper sanitation and vaccination protocols, providing sick animals with antibiotics, being proactive about their nutrition, and understanding which management practices to use based on the origin of your cattle, as well as their transportation details and the time of year, are all effective ways to mitigate any potential challenges associated with receiving cattle.

 

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
Feedlot cattle
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "e4b8cd32-e447-42d0-8665-673f8d56b8fe"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Content Author

3 ways to increase milk production while reducing your carbon footprint

Submitted by aledford on Mon, 09/13/2021 - 09:34

In the dairy industry, successfully implementing solutions that “kill two birds with one stone” requires innovation and usable data. Finding ways to reduce the carbon footprint on dairy cattle operations while also maintaining high milk production is just that kind of situation.

It is important to understand that dairy production is on a continuous path of growth. Some insightful data provided by the IFCN shows that global milk production is projected to increase by 35% between 2017 and 2030. This level of growth is promising for the industry but will also present many challenges and raise questions about our ability to provide more with fewer resources while adopting practices that are environmentally sound. To top everything off, all of this must be achieved while also continuing to increase transparency for consumers about how their milk is produced.

The main question is: Can we reduce the carbon footprint of milk while also improving our production and profitability?

Greenhouse gases have been a trending topic among consumers for several years, and this topic is now resonating more with dairy farmers across the world, as new regulations and initiatives are being presented. To achieve reduced emissions, we must look at ways to optimize production — including via nutritional solutions, which will play a very big role as we go forward.

Dairy producers can utilize nutritional solutions as tools for reducing methane emissions from dairy cows, but technologies that offer environmental benefits cannot compromise on animal performance, as doing so would mean requiring more animals to meet the growing demand for food. However, before looking to implement any of these solutions, dairy producers will need to measure their carbon footprint.

TOOL ONE: Alltech E-CO2

To successfully reduce our greenhouse gas emissions, we must first know where these emissions come from. Analytical services, such as Alltech E-CO2, identify and quantify these hotspots through accredited environmental assessments. Over the past 10 years and more than 10,000 assessments, Alltech E-CO2 has found that the two largest sources of emissions on dairy farms are enteric emissions (i.e., methane from the rumen) and feed use. Together, these two sources contribute more than 60% of all emissions on dairy operations. These sources relate to rumen health and an animal’s ability to best maximize the feed it is being fed. By ensuring the production of a healthy and productive cow, we are helping operations improve their production efficiency while also enabling energy to be utilized for milk production and regular body maintenance, rather than being wasted by fighting health challenges. This type of information is critical for identifying targeted solutions that will enhance our methane mitigation strategies.

To successfully reduce a farm’s carbon footprint, we must look beyond one gas in one area and consider the balance of emissions across the entire farm. A lifecycle observation is one way of doing that, and it’s all about identifying opportunities to reduce waste and improve farm efficiency, which will translate to more money for the producer.

Learn more about Alltech E-CO2 here.

Read on to learn more about two nutritional solutions that work to target the areas where there is room for improvement, as identified by Alltech E-CO2.

TOOL TWO: Optigen®

Optigen is a feed ingredient backed by years of robust research data that works to support production efficiency and sustainability. Optigen, a concentrated source of non-protein nitrogen, releases nitrogen into the rumen in a slow-release form. This provides a sustained release of ammonia in the rumen in sync with fermented carbohydrate digestion, thus allowing for efficient microbial protein synthesis in the rumen.  

In order to gather clear evidence that shows how we can use feed strategies to reduce our carbon footprint, the FAO developed a standard guideline for the environmental performance of feed additives in the livestock supply chain. These standards recommend the use of data from meta-analyses and life cycle analyses. Meta-analyses make it possible to combine data from years of multiple studies to arrive at an evidence-based conclusion by using comprehensive statistical procedures. Life-cycle analyses allow us to quantify the greenhouse gas emissions along the entire supply chain or in the production cycle of a particular product. Combining these two approaches demonstrates how feeding technologies can contribute to the reduction of greenhouse gas emissions and/or better sustainability credentials.

"dairy optigen"

Included here is an example of a meta-analysis of Optigen. The data from this meta-analysis indicate that, over the course of around two decades, research has shown that using Optigen is associated with a 23% reduction, on average, of plant protein sources in the diet. Soybean meal, specifically, can be reduced by about 21%, and an increase in feed efficiency of around 3% has also been documented. Additionally, diets that include Optigen and use reduced amounts of plant protein sources have been shown to improve nitrogen utilization efficiency by 4%, leading to a 14% reduction in the total carbon footprint of the diets of animals used in milk production.

 Read the full meta-analysis here.

TOOL 3: Yea-Sacc®

There are some products on the market — like yeast cultures — that can help improve production efficiency while also reducing the carbon footprint of an operation. Yea-Sacc is a yeast culture based on the Saccharomyces cerevisiae strain of yeast. Yea-Sacc modifies rumen activity by supporting a consistent improvement in the growth and activity of lactic acid-utilizing bacteria, which helps stabilize the rumen pH. At the same time, it also works to improve the digestion and utilization of nutrients. Thanks to these types of improvements, cows can absorb more nutrients for higher milk production.

Utilizing a meta-analysis approach once again, a collection of 31 studies has shown that feeding Yea-Sacc to dairy cows can lead to an increased milk yield of 1 kg/head/day, on average, and can reduce the carbon footprint and nitrogen emission intensity by around 3% and 5.4%, respectively. These numbers demonstrate that it is possible for milk production efficiency to increase and for the carbon footprint and nitrogen excretion intensity to decrease simultaneously.

Explore the additional benefits of Yea-Sacc here.

At the beginning of this blog, we posed a question: Can we reduce the carbon footprint of milk while also improving our production and profitability? With proven tools like the ones outlined here, the answer to that question is yes: It is possible to reduce the carbon footprint of dairy production and to improve our economic returns and performance at the same time. Based on the data compiled in various meta-analyses, it is clear that there are feeding solutions on the market that farmers can use to reduce their emissions and increase their productivity and profitability in conjunction with nutritional strategies that will help improve production efficiency in dairy systems.

 

I want to learn more about nutrition for my dairy.

<>Premium Content
Off
<>Featured Image
Dairy milk production
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "2c5ba201-30c0-4669-9dc4-c9711ca1b006"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics
<>Programs and Services
<>Content Author

Unlock the potential of feedlot rations for beef cattle

Submitted by aledford on Mon, 09/13/2021 - 09:21

Feed is expensive — especially the grains that serve as the major energy source in most finishing rations for beef cattle. With this expense on the rise, nutritionists work hard to make sure that their feedlot rations for beef cattle are high-quality feeds that support weight gain and feed conversion efficiency. 

Energy is a key element to consider when developing a feed to promote weight gain in beef cattle. Both grains and forages contain energy that is useful when finishing beef cattle. Grains are considered high-energy feeds because the energy in grains comes largely from starch. Starch is composed of glucose chains, which can easily be broken down by rumen microorganisms. The structural components of forage — such as cellulose, hemicellulose and lignin — surround the nutrients with complex linkages. Rumen microbes can’t always break these linkages, however, limiting the availability of energy in the forage. This is particularly true for feedlot cattle, as the ruminal pH of feedlot cattle is less than optimal for fibrolytic microorganisms, resulting in reduced fiber digestion.

When thinking of these structural components, imagine them as locks protecting the energy and nutrients in feedstuffs. Enzymes — which are either endogenous, from the microbial population, or the exogenous enzymes in feed additives — can break apart these protective structural components, unlocking both the potential of feeds and the potential of the cattle being fed.

Enzymes can make a difference in finishing cattle

The scientific literature shows inconsistent results for enzyme use in beef cattle diets. However, this is likely due to the wide variety of enzymes that have been tested, the vast array of feedstuffs that have been used in experimental diets, and the kind of data that has been recorded. For example, cattle grazing cool-season versus tropical grasses have different enzymatic needs, because those grasses have different chemical compositions. The same goes for cattle consuming corn silage versus barley-based finishing diets. This is especially true in diets that utilize byproducts, as the most easily accessible nutrients have generally already been extracted by the initial industry that processed the material.

  • Starch-based diets: Corn, barley
  • Forage-based diets: Corn silage, barley silage, hay and grasses
  • Byproducts in diets: Corn gluten meal, distillers grains, cottonseed hulls, etc.

The rumen is a complex, enzyme-rich environment. The microbes of the rumen can break down most components of foods — but the extent and speed of this breakdown is often a limiting factor for nutrient release. A common question when discussing rumen efficiency is: Can a small enzyme addition really make a change in rumen function and feed digestion?

For an enzyme to be effective, several factors need to be met:

  • It must fill a gap in feed digestion not met by the existing microbiota.
  • The type of linkage it opens must be present in the feed.
  • The enzyme needs to be stable in stored and mixed feed.
  • The enzyme must be active at rumen temperature and pH.
  • It must be able to survive in the feed.

Returning to the lock-and-key metaphor about enzymes, any enzyme added to a diet must fit the “locks” on the components of that diet.

How do you measure enzyme efficacy in finishing cattle?

Measuring the effects and value of enzymes can be tricky. Often, researchers expect an increase in the rate or extent of digestion for a particular diet component — and sometimes, they are right. Other times, however, the enzyme acts in an unanticipated way, such as changing the rate of passage to promote feed intake, shifting the metabolites available to microbes in the rumen, or even affecting downstream metabolic processes. If researchers are not measuring these actions, they may conclude that the enzyme had no effect, when in reality, they were simply looking in the wrong direction and missed the action of the enzyme. As such, in enzyme research, it is important to look beyond intake, weight gain and feed conversion and to measure a wide range of parameters to fully capture the effects and mechanisms of a given enzyme. 

Outside of the scientific realm, it’s important to recognize what you expect an enzyme to do when it is added to the diet. Here are a few common reasons for utilizing enzymes:

  • By incorporating enzymes into your finishing rations for beef cattle, you may be able to utilize lower-cost ingredients in the diet while still experiencing equal performance.
  • Enzymes can help improve feed efficiency in feedlot cattle without making any other changes to the diet.
  • Getting more pounds on your animals can be possible with enzymes. Certain enzymes can support superior carcass weight. More pounds per day = more dollars.
  • Some enzymes reduce digesta viscosity, which can contribute to better post-ruminal nutrient absorption and support digestive health. Get the most out of your rations.

Look at your cattle’s diet and your goals for your operation. Could enzymes help you reach those goals?

There are enzyme options available — just know your goals

Most research on cattle focuses on tweaking existing procedures, feeding plans, etc. Researching enzymes takes years of trial and error, on both the benchtop and in the animal, to find effective, cost-efficient, scalable options. This type of research is slow but generates the knowledge that can lead to new insights and technologies that allow us to maximize feed efficiency in feedlot cattle. New enzymes are popping up regularly. If you choose to utilize these additives in your feedlot rations, be sure that they are effective on the ration ingredients you use and will provide the results you want in your operation. Consult with your nutritionist or an Alltech representative below to learn more about how enzymes can work in your operation.

 

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
Feedlot cattle
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "e4b8cd32-e447-42d0-8665-673f8d56b8fe"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Programs and Services
<>Content Author

VanDenAkker Farms: Gene expression is boosting corn silage feed efficiency

Submitted by aledford on Thu, 09/02/2021 - 10:13

While your average person is still snuggled underneath their blankets in the early morning, Corne VanDenAkker can be found in his barn, tending to the task of milking his herd of cows. There, he reflects on his relationship with farming, which is rooted in a tradition going back almost forty years, beginning when his family made the move from their homeland in Holland to their current homestead in Canada. Upon making the choice to continue this farming tradition, VanDenAkker began farming full-time on his own land and tending his herd after earning a degree from the University of Guelph. Since then, he has grown his herd to over 100 head, added milking robots to modernize his operation, and is continuously seeking how to become a better, more efficient and sustainable farmer.

Through his years of experience, VanDenAkker knows the importance of being cognizant of what goes into his dairy cows in terms of what they eat and the balance of nutrients required to maintain his herd health and optimal milk production. However, he was unsure if he would be able to support his herd with the yields from his own fields. 

Everything we grow goes into our cows

“Everything we grow goes into our cows,” VanDenAkker noted when discussing the 250 acres of corn that is farmed and destined for his own silage. “I didn’t know if I could feed them enough to support the milk.”

VanDenAkker has long used Alltech products such as Yea-Sacc and Optigen in his livestock feed, and five years ago, he was introduced to Grain-Set, an Alltech Crop Science product geared toward grain crops. He began applying it on 40 of his silage corn acres, and over the years since, he has seen consistent results at every harvest. 

“Year after year, we are seeing improved cob fill and an increase in the number of bushels we are getting from those fields when compared to the untreated area,” VanDerAkken said, adding that his average increase is more than 10 bushels per acre.

This crop yield increase is formidable, but the data that really impressed VanDenAkker came after he began feeding his Grain-Set-treated corn silage to his cows. 

“They increased their milk production when we switched,” he said. “I saw a trend in the increase but couldn’t be sure (that it was totally related to Grain-Set).” 

Backed by Science

VanDenAkker’s curiosity about the results prompted him to dig deeper into what he was seeing, and he decided to send samples of both his treated and untreated corn silage for analytical testing. The results spoke for themselves: The Alltech Crop Science-treated corn silage showed a 5.8% increase in neutral detergent fiber (NDF) digestibility. This meant that the dairy cows were getting more energy and taking in more nutrients from the feed, allowing them to not only increase their milk production but to also have more balanced rumen health. These improvements help increase farmers’ profitability and make their systems more efficient.       

What is the science behind these results? Simply put: nutrigenomics. Gene expression helps corn silage crops better withstand environmentally stressful conditions, like drought or overly wet soils, and both biotic and abiotic stress. The plants respond by inducing their own resistance to these stressors and improving their own performance.  

Based on these results, VanDenAkker is enthusiastic about his plans to continue using Grain-Set on his silage corn. When asked about the difference he has seen in his cows, VanDenAkker smiled pragmatically and said, “I feed the cows myself, and I can see the results for myself. They are eating better and getting what they need from the feed. I always had good cows, but they are very decent now.”

What is Grain-Set?

Grain-Set is a unique blend of micronutrients and fermentation products and is specifically formulated for cereal, grain, forage and oil crop production.

  • Provides nutrients essential for plant metabolic processes
  • Increases grain weight and yield
  • Optimizes crop uniformity
  • Improves grain fill and quality
  • OMRI-listed for use in organic production

 

Have a question? Contact us!

<>Premium Content
Off
<>Featured Image
vanderakker farms
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "d2b1a74a-d16c-4ea9-b2fd-b17b4c1cfc91"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Crop Science Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics

How do we verify sustainable animal feed in ruminant production?

Submitted by aledford on Wed, 03/31/2021 - 08:09

People interpret sustainability in different ways. Hence the uncertainty and divisiveness the topic can create in discussions. In contrast with other industries, the agri-food sector has the unique position of being a solution provider when it comes to mitigating emissions and supporting biodiversity in our local environments. Animal feed is integral to profitable and efficient dairy and beef farming. Therefore, feed production has a crucial role in how we lower the environmental impact associated with the food system.

Strengthening the links in our chain

COVID-19 has emphasized the need for such resilient food systems. Feed production capacity is directly correlated to the amount of food available for human consumption and, indeed, general food security. Alltech’s experience across 128 countries finds that sustainable and efficient feed supply chains are relevant to small-scale livestock production all the way up to some of the world’s largest integrators. A growing challenge for the feed industry is competition with humans for similar feed sources. This challenges the feed additive inclusion to improve rumen efficiency and exploration of bespoke feed ingredients that only ruminants can utilize. Sustainable animal feeding has and is being practiced. Through Alltech’s unique network of eight Alltech IFM™ (in vitro fermentation model) labs around the world, we can verify in greater detail diet efficiency and where scope exists to lower emissions and improve producer profitability. 

Can you verify that?

It is no longer sufficient to simply claim a low carbon footprint for your livestock production system or animal feed. This needs to be supported by repeatable, measurable and verifiable evidence. Alltech E-CO2 has developed the Feeds EA™ model to help feed manufacturers and producers globally measure and lower the carbon footprint of their feed. Feeds EA measures the environmental impact of feed production at the feed mill level by assessing the effects of existing compounds or blends. This is determined by calculating greenhouse gas emissions from production, cultivation, processing, energy utilization and transportation in feed manufacturing. Feeds EA™ can calculate emissions from a database of more than 300 ingredients, including raw materials, soya products, byproducts and additives.  

In reducing food waste through circular agriculture-type initiatives, we can be confident about the resilience of our food production systems to embrace more efficient resource utilization. This is exemplified in initiatives such as supplementation of byproducts to ruminants and closing nutrient loops. By lowering food loss and waste in our livestock production systems in a verifiable way, we can continue to make a strong case for the sustainable solutions our industry offers in slowing the pace of climate change.

Mitigating waste

Precision agriculture and the application to animal nutrition has been proven in recent Alltech meta-analyses on dairy (Salami et al., 2021) and beef research (Salami et al., 2020) to lower environmental impact through improved nitrogen utilization in ruminant systems. Optigen® supplementation through dairy diets was shown to:

  • Improve nitrogen utilization efficiency in dairy cattle by 4%, thanks to better nitrogen capture in the rumen.
  • Reduce manure nitrogen excretion by 12–13 g of nitrogen/cow/day.

This data suggests, for example, that the use of Optigen could reduce the annual manure nitrogen excretion from the U.S. dairy sector by an average of 51,509 metric tons of nitrogen based on the annual milk output.

Simply put, this approach is trying to provide ‘the right amount of nitrogen, at the right time, in the right place’ to help in reducing waste on farms. Results from the meta-analysis also showed that the use of Optigen in dairy diets resulted in a carbon saving of around 54 g of CO2e per kg of milk. When extrapolated to the annual milk output of the German dairy sector, for example, this would be equivalent to a carbon emission reduction of 1.8 million metric tons of CO2e. Such a carbon saving represents 16% of the entire reduction target for German agriculture by 2030.

A simulation analysis based on the results of the meta-analysis indicated that feeding Optigen to 1,000 dairy cows would:

  • Increase income over feed costs by $18,000.
  • Reduce the carbon footprint of the herd by 647 metric tons of CO2e. That carbon reduction is the same as taking 424 cars off the road or 436 houses’ use of electricity.

"Dairy profitability"

The meta-analysis on beef research highlighted how the partial replacement of vegetable protein with Optigen exhibited a consistent improvement in the liveweight gain and feed efficiency of beef cattle. The many positive effects included an average higher liveweight gain (by 8%) and better feed efficiency (by 8%), with the inclusion of corn silage enhancing the effects of Optigen.

A simulation analysis based on these benefits indicated that feeding Optigen to gain 440 lbs. in 1,000 cattle would:

  • Reduce the time to slaughter by 9 days.
  • Reduce feed costs by $18,000.
  • Support a reduction in the carbon footprint of the beef unit by 111 tons of CO2e. That carbon saving is the same as taking 73 cars off the road or 75 houses’ use of electricity.

"Beef profitability"

Sustainability does not have to come at a cost

Lowering the environmental impact from animal feed does not imply lowering revenues for food system stakeholders. From large dairy farms in the U.S. to the 300 million dairy cows predominantly spread across small farms in India, Alltech has firsthand experience of how sustainable solutions have become the non-negotiable in animal nutrition. Profitable farming understandably leads this agenda. With animal feed typically representing the most significant variable cost in producing animal products, there is a business responsibility to ensure we minimize food loss and waste.

Animal feed production has humbly underpinned the food system that has enabled global population growth over the last 150 years. It is now time to recognize this unique contribution and how it also serves in discovering and implementing technologies that lower the environmental impact of animal products and support the circular economy.

Considering sustainability efforts need to make both environmental and economic sense, don’t miss our related blog 6 tips to stretch protein supplies and lower your feed costs.

 

I want to learn more about ruminant production.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Programs / Services
<>Post Type
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "c16414a5-942e-4b92-ab92-ce2ab289a7c0"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics
Subscribe to Feed Efficiency
Loading...