Skip to main content

Managing the east coast animal feed mycotoxin challenge

Submitted by aledford on Thu, 08/18/2022 - 09:53

Nestled on the banks of the Clyde River, overlooking Vermont’s widely reputed lush, forested hills sits Poulin Grain. Proud to call Vermont home since 1932, this fourth-generation family-owned business offers personalized service — including one-on-one animal nutrition consultations, lab-based forage analysis and customized recommendations — along with the manufacturing and delivery of premium animal feeds. Poulin Grain’s diverse customer base includes livestock producers and animal enthusiasts throughout the eastern U.S. and Canada.

As noted by company president Josh Poulin, the nearly 90-year-old business “[has] always been committed to delivering high-quality animal nutrition products at a fair value, and taking care of [its] people, animals and customers.”  

"Poulin Grain facility"

Based in Newport, Vermont, Poulin Grain serves a wide range of customers throughout the eastern U.S. and Canada, including many dairy producers.

Managing mycotoxins in feed and forage

Poulin Grain maintains a steadfast focus on serving the animal and meeting their requirements, which is why they are consistently exploring new technologies that can help them implement superior quality control and produce animal feeds of only the highest caliber.

The company’s northeastern U.S. location — a region often referred to as “mycotoxin central” — led to them initially building a relationship with Alltech. The two companies worked together to implement a mycotoxin control program at Poulin’s mills while also helping their nutrition teams and customers understand more about this dynamic problem on-farm, which includes a central focus on enhancing forage quality.

Why mycotoxin testing is necessary

A 2021 study from Weaver et al. highlighted the prevalence of these toxic compounds in U.S. corn grain and corn silage by analyzing the results of almost 2,000 grain and forage samples across seven years. Findings showed that the mean numbers of mycotoxins per sample were 4.8 and 5.2 in grain and silage, respectively.

These findings are often replicated in the ongoing testing carried out by Alltech’s 37+® mycotoxin analysis laboratory network. For example, in 2021, over 7,000 tests revealed that an astounding 95% of samples contained two or more mycotoxins.

In recent years, several factors have combined to exacerbate the mycotoxin risk in animal diets worldwide. More extreme weather patterns, such as droughts and floods, are creating extra stress on crops, which is one of the primary predisposing factors for mold and mycotoxin development. Additionally, the shift to no-till crop establishment and reduced crop rotation is leading to a greater buildup of crop residues, which only serves to increase the mycotoxin risk in subsequent crops.

How mycotoxins impact animals

Mycotoxins can be the root cause of numerous problems on-farm. However, some of the more common mycotoxin symptoms include:

  • Digestive disorders, such as diarrhea.
  • Reproductive challenges, such as decreased fertility and abnormal estrous cycles.
  • Reduced animal performance, often linked to reduced feed consumption and nutrient utilization.
  • Compromised health, related to suppressed immunity and increased disease risk.

As demonstrated by the routine mycotoxin analysis mentioned above, the presence of multiple mycotoxins in grains and forages tends to be the norm rather than the exception. This may lead to additional or synergistic effects, further compounding the mycotoxin problem for livestock producers.

Taking a proactive approach to mycotoxin management

Although mycotoxins are often chemically stable enough to survive food and feed processing — meaning it is virtually impossible to eliminate them from the supply chain — there are some key steps that can be taken to enhance control efforts.

John Winchell serves as Alltech’s Northeast U.S. territory sales manager, where he has worked with Poulin Grain for nearly two years. When working through mycotoxin challenges, John has always believed it’s best to take a more proactive approach.

“When you think of mycotoxin management, I think it’s much more than just a product — it’s a program; [one that involves] looking at pre-harvest and post-harvest strategies, and [considering] different things, such as climate, population, and varieties,” John explains. “[This paints] a total picture as opposed to [taking a] reactive [approach].”

Aided by Winchell’s support throughout the crop-growing season, Poulin Grain and their dairy nutrition customers have implemented steps to help enhance forage quality and produce superior quality dairy feeds.

For example, to manage grain and forage quality post-harvest, John introduced Poulin Grain to both the Alltech 37+ mycotoxin analysis and Alltech RAPIREAD®.

Alltech 37+ is a lab-based mycotoxin detection method that can identify up to 54 individual mycotoxins, including those in total mixed rations (TMRs).

Alltech RAPIREAD utilizes a portable testing module to quickly detect six key mycotoxins. It is typically used directly on-farm or in the feed mill due to its ability to deliver quick results, often in less than 15 minutes.

“Working with [Alltech] 37+ to look at the different samples on different commodities and forages has really helped us get closer to where we need to be on forage quality and cow health,” states Winchell, while also highlighting how Poulin Grain were early adopters of Alltech RAPIREAD, thereby allowing mycotoxin control decisions to be activated on the same day that a challenge is identified.

"dairy cow forage quality"

Optimizing dairy forage quality is a key focus area for both Poulin Grain and Alltech.

Maximizing livestock productivity

Poulin Grain is no stranger to adaption and innovation, as noted by general manager and senior vice president Mike Tetreault, “One of the key things for Poulin Grain to continue to be leaders in animal nutrition is we must be innovative. And part of being innovative for us is having the right products, services and technologies [in place].” That is where John Winchell and Alltech come in.

According to Tetreault, “[Winchell] has been a tremendous asset for us — he’s been really committed [to serving] all our customers and covering every area. He’s been a true source of support, education and growth for all our customers and [our] company. I don’t know what we’d do without this Alltech service.”

From starting with a simple introductory webinar to today implementing the latest in mycotoxin detection, Mike feels the Poulin team has now become experts in managing mycotoxins and is far more able to make informed decisions.

What lies ahead

As Poulin Grain’s business continues to grow and develop the ways in which it serves its diverse customer base, Tetreault is excited about what lies ahead.

“When we find problems that really need further investigation, Alltech’s 37+ [program] has been there to support us dramatically for the last year,” he says. “We’ve had several situations where we’ve been able to help and correct management [on-farm]. It’s really been a great run, and I know that going forward, utilizing these Alltech services, products and technologies will [continue to] truly be an asset for Poulin Grain.”

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "c16414a5-942e-4b92-ab92-ce2ab289a7c0"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions

Potential effects of deoxynivalenol (DON) on the health of farm raised fish

Submitted by aledford on Thu, 08/19/2021 - 10:07

Aquaculture, in contrast with capture fisheries, has remained stable over the last few decades. The industry continues to grow and contribute to the increasing food supply for human consumption, reaching worldwide production of 80 million metric tons (Mt) in 2016. To sustain its growth, the aquaculture industry is highly dependent on commercial feed sources. The inclusion rate of traditionally used finite and expensive marine protein and fat sources from wild-caught fish (i.e., fishmeal and fish oil) in the diets of farm-raised fish species will continue to decline, and the industry has already shifted to crop-based raw materials to meet the rising demand for aquafeeds.

Fish require several carefully chosen raw materials to provide them with a healthy diet, but fish-based proteins are not essential. The industry has recognized this, and there are now many fish feeds with 0% fish-based protein ingredients and an industry average (FIFO Factor). Plant-based feed ingredients increasingly replace marine-based components, and therefore, an enhanced level of understanding of the nutritional quality of raw materials derived from plant sources is becoming increasingly crucial for aquafeeds. Moreover, the higher inclusion of less-expensive plant sources may introduce a series of anti-nutritional factors (e.g., protease inhibitors, phytates, saponins, glucosinolates, tannins, non-starch polysaccharides) and/or increase the occurrence of mycotoxins in fish feed; factors that may affect the quality and safety of aquafeeds.

Mycotoxins in aquaculture feed

Mycotoxins are fungi that can grow on crops during growth, harvest, processing or storage. The development of these fungi is climate-dependent and most commonly seen in tropical regions. In these climates, the fungi produce chemical compounds known as mycotoxins and can have a greater impact on animal health.

Fish farming is a diverse industry, and each aquaculture species will have different sensitivities to the impacts of mycotoxins. These can cause a reduction in performance — reduced growth and increased feed conversion ratio (FCR) — and increased disease susceptibility and mortality rates. As these issues can be attributed to other concerns, the risk can often be overlooked and underestimated in aquaculture.

Mycotoxins are mainly detected in plant-based feedstuffs, readily present in corn, wheat and soybean meal. Increasingly, the occurrence of mycotoxins has been reported in aquafeeds. There are over 50 different types of mycotoxins, but the most commonly known and most prevalent is deoxynivalenol (DON).

Effects of deoxynivalenol on the health and growth of farmed fish species

"mycotoxins in aquaculture species"

Accumulation of DON in fish can be harmful and impact their performance. In terms of occurrence and toxicity, DON has been characterized as the most high-risk mycotoxin in aquafeeds. Its effects include:

1. Ribotoxic stress response: DON binds to ribosomes, inducing a “ribotoxic stress response” that activates mitogen-activated protein kinases (MAPKs).

2. Oxidative stress: DON causes oxidative stress in cells by damaging mitochondria function, either through the excessive release of free radicals — including reactive oxygen species (ROS), which induce lipid peroxidation — or by decreasing the activity of antioxidant enzymes.

3. Impacting epithelial cells in the digestive tract: Predominantly, rapidly proliferating cells with a high protein turnover, such as immune cells, hepatocytes and epithelial cells of the digestive tract, are affected by DON.

4. Reduced growth rate: In Atlantic salmon diets, 3.7 mg/kg of DON resulted in a 20% reduction in feed intake, an 18% increase in FCR and a 31% reduction in specific growth rate. In white shrimp, DON levels of 0.5 and 1.0 ppm in the diet significantly reduced body weight and growth rate, while FCR and survival were not affected.

5. Decreased immune system response: Mycotoxins impair optimum animal performance by affecting intestinal, organ and immune systems. These, in turn, negatively impact overall performance and profitability.

6. Reduced feed intake: A study conducted by Woodward et al. (1983) showed that rainbow trout had a sharp taste acuity for DON. Their feed intake declined as the concentration of DON increased from 1–13 ppm of the diet, resulting in reduced growth and feed efficiency

The impacts will vary on many factors, including the quantity, feeding level, duration of exposure and aquatic species. A recent meta-analysis completed by Koletsi et al. (2021) highlights the risk of DON on feed intake and growth performance. In parallel, data was collected to quantify the risk of exposure in fish. The extent to which DON affects feed intake and growth performance was evaluated by employing a meta-analytical approach.

Having completed a full meta-analysis of the current research and trial data available for the aquaculture species, Koletsi et al. concluded that the current recommendation for the limit of DON in fish diets is too high and needs to be reviewed in order to protect the welfare of fish and maintain an economic advantage.

Preventing mycotoxins in aquaculture

Maintaining a good management system will help to control the mycotoxin risk. However, some mycotoxins remain stable, even after high-temperature extrusion processing. For this reason, additional steps should be taken to mitigate the risk. Alltech mycotoxin management tools, such as Alltech 37+® and Alltech® RAPIREAD, help farmers and feed producers identify their total mycotoxin risk (REQ). Evaluating risks associated with mycotoxins on animal performance and financial losses can be more rapid than ever before. Additionally, to further manage mycotoxin risk and understand what you can do for your business, you can visit knowmycotoxins.com.

References available on request.

 

I want to learn more about aquaculture nutrition.

<>Premium Content
Off
<>Featured Image
Effects of DON on aquaculture feed
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "9a2b89e0-455d-49e8-927e-620466728a8d"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Topics

Mycotoxins in pet food: Know the risks for dogs and cats

Submitted by lkeyser on Fri, 02/05/2021 - 10:35

The threat of mycotoxins is nothing new to the companion animal industry. However, never before has it been so prevalent and public. Most recently, the reality of mycotoxins in pet food manifested in the death of more than 70 dogs and illness in 80 more in the U.S. due to aflatoxin poisoning. This led to a massive recall of pet food products after they were found to be the source of the issue (FDA, 2021).

Although pet food manufacturers have stringent quality and safety practices in place for choosing ingredients, even with strict testing procedures for mycotoxins in incoming materials and finished pet food, there can be challenges in knowing exactly what might be hiding in seemingly safe ingredients.

Grain processing, sampling error, analytical methods, synergistic interactions and storage conditions can all present challenges to the pet food manufacturer when trying to accurately detect mycotoxins. A disturbing event like this recent aflatoxin poisoning further emphasizes the need for grain and feed producers to know which mycotoxins they are most likely to encounter, what risks those mycotoxins bring to the table and how best to manage them.

What is aflatoxin?

Mycotoxins are substances that are produced by mold or fungus. Aflatoxin, specifically, is a metabolite produced by the greenish-yellow mold Aspergillus flavus (A. flavus) and comes in four different strains: B1, B2, G1 and G2. The most toxic of those, aflatoxin B1, is a carcinogen that can adversely impact liver function and immune response.

Where does aflatoxin appear?

A. flavus can grow in a temperature range of 54–118° F, with optimum growth at 98.6° F. Its moisture requirements are low, meaning just 13–13.2% is optimal for growth.

Aflatoxin is usually seen in corn, cottonseed, peanuts, almonds and their associated byproducts. For this reason, corn is one of the ingredients in dog food that poses the greatest risk to companion animals.

All of these crops are typically grown in the southern U.S., where the temperature and moisture are optimal year after year. However, in 2020, the August 25 Drought Monitor showed that these optimal conditions spread far to the north and east, into corn-growing regions.

A recent report in the results of the Alltech Summer Harvest Survey showed that this change in weather patterns has created an unusual situation in which aflatoxin is being detected at higher than normal levels in corn samples outside of the normal high-risk areas. This now presents a new set of challenges for pet food manufacturers to consider when purchasing ingredients.

A. flavus can infest the corn plant through the silks at pollination, affecting the grain, and via stalks and leaves damaged by insects and weather events, such as high winds and hail. Infestation can be field-wide but is more often pocketed in areas of greater plant stress. This can make it challenging to identify aflatoxin in corn grain, as it may only be present in a few kernels in a truckload. Therefore, when testing incoming ingredients for mycotoxins, multiple pooled samples are required to accurately identify the potential risk.

Stored corn needs to be dried to less than 14% moisture and closely monitored for mold growth and insect damage. Screening the grain going into and/or out of storage is a good practice to remove the damaged and cracked kernels that can be a primary source of not only aflatoxin but other mycotoxins as well.

In addition to the risk attached to raw whole grains, feed producers should be aware of the higher risk of concentrated levels of mycotoxins that can be present in processed cereal by products like bran which is often used in pet food.

Fig 1. U.S Drought Monitor highlighting the drier than normal conditions in north and eastern regions (August 25, 2020)

Mycotoxin symptoms in dogs

While no pet owner wants to think about the risk of mycotoxins, it is important to know what to watch for to ensure early action can be taken where necessary to alleviate the problem. One of the primary signs of pets ingesting food contaminated with mycotoxins is liver damage, this can occur from either acute or chronic exposure. Other typical symptoms of mycotoxin contamination in dogs include:

  • Vomiting and loss of appetite
  • Weight loss
  • Lethargy
  • Diarrhea
  • A weakened immune system
  • Respiratory illnesses
  • Tremors
  • Heart palpitations
  • Jaundice

Aflatoxin is one of the most potent mycotoxins and a known carcinogenic, and long-term exposure can lead to death, causing devastation for pet owners and their families.

If your dog displays any of these clinical signs, it is important to visit the veterinarian as soon as possible. Take a picture of your dog food and the bag’s lot number for reference, as well.

What are the regulations regarding aflatoxin?

The Food and Drugs Administration (FDA) regulates aflatoxin in feedstuffs and feeds. The current regulatory limit for pets (dogs, cats, rabbits, etc.) is 20 parts per billion (ppb).

In 2020, not only did aflatoxin’s geographic landscape grow — it also impacted the total corn yield. Decreased yield will necessitate moving greater amounts of corn around the country, further increasing the potential risk with corn in dog food.

Mitigating the threat of mycotoxins

To identify, manage and mitigate the mycotoxin challenge in feed production and to counteract the effects of mycotoxins before pets can encounter them, feed producers are advised to have a robust mycotoxin management plan in place, that can assess and manage risk at each step in the supply chain.  Modern, state-of-the-art testing, such as Alltech® 37+® and Alltech® RAPIREAD™,  can help to detect the mycotoxin risk and allow for the necessary control steps to be put in place.

For pet owners, where practical, it is encouraged to ask the manufacturer questions about their mycotoxin testing program and mitigation plan.

With a joined-up approach to mycotoxin management, the pet food industry can help to avoid a repeat of the recent feed recalls, and families can rest assured that they will not have to face up to the sad reality of losing a beloved pet.

For more information, please speak to your local Alltech representative or visit knowmycotoxins.com.  

I want to learn more about pet nutrition.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "34900c17-cf14-428b-8f57-9c397e8175da"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Image Caption

Mycotoxins in pet food have unfortunately been brought into the limelight with recent events. The good news is that there are many solutions in place to mitigate that risk for our beloved companion animals.

<>Content Author

Alltech 37+® analyses new and emerging mycotoxins

Submitted by mdaly on Thu, 09/19/2019 - 08:06

 

Over 50 mycotoxins can be tested for by the Alltech 37+ Laboratory

 

[DUNBOYNE, Ireland] New and emerging mycotoxins can now be analysed by the Alltech 37+® Laboratory. In total, five new mycotoxins have been added to the testing panel, bringing the total number of detectable mycotoxins to 54. These new additions further increase the understanding of mycotoxin occurrence and the potential risk to animal performance.

Emerging mycotoxins refers to mycotoxins that are neither routinely analysed nor legislatively regulated. However, research has shown more evidence of their increasing incidence and potential toxicity to animals. The emerging mycotoxins analysed by Alltech 37+ include beauvericin; moniliformin; enniatins A, A1, B and B1; phomopsin A and alternariol. Fusaric acid also features in this emerging mycotoxin category.

“The Alltech 37+ mycotoxin analysis test is the cornerstone of the Alltech Mycotoxin Management program,” explained Nick Adams, global director, Mycotoxin Management, Alltech. “We now test for 54 mycotoxins. With this new analytical capability, Alltech is better equipped to understand how contaminated feedstuffs might impact animal performance and health.”

Due to their toxic properties, mycotoxins are a concern for livestock producers, as they can impact feed quality as well as animal health and performance. A world leader in mycotoxin management, Alltech’s 37+ test results provide a realistic picture of mycotoxin contamination in feed ingredients or total mixed rations, speeding up the process of diagnosis, and suggest effective remediation and help move toward an effective mycotoxin control plan.

“Since adding these mycotoxins to our analytical capabilities, we have already seen a high frequency of samples with these contaminants,” explained Dr. Patrick Ward, Ireland Analytical Services Laboratory manager, Alltech. “As we test more samples and accumulate more data, we will strengthen our understanding of these mycotoxins.”

Between Alltech’s 37+ mycotoxin analytical services laboratories in Lexington, Kentucky, and Dunboyne, Ireland, they have run over 30,000 samples, each searching for up to 54 mycotoxins in animal feed.

For more information on mycotoxin management, visit knowmycotoxins.com.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Article Type
<>Products
<>Regions
<>Topics
<>Image Caption

Alltech’s 37+ test results provide a realistic picture of mycotoxin contamination in feed ingredients or total mixed rations

<>Content Author

7 tips for managing field mycotoxins

Submitted by clbrown on Wed, 01/02/2019 - 20:00

Molds and mycotoxins can be detrimental to both crops and livestock feed. Toxin-producing molds may invade plant material in the field before harvest, during post-harvest handling and storage, and during processing into food and feed products. Prevention through sound management practices is essential, since there are limited ways to completely overcome problems once mycotoxins are present. 

1. Understanding contamination:

Plants are infected with mold and mycotoxins when spores of certain diseases are released and blown onto plants and soil. Spores can overwinter in the soil, leading to infection in the following years. 

2. Prevention:

Three steps can aid in the prevention of mycotoxin infestations. The first step should be to act before any infection has occurred. If that is not possible, you should act during the period of fungal invasion of the plant material and mycotoxin production. If, unfortunately, you should miss either of those opportunities, action should instead be initiated when the agricultural products have been identified as heavily contaminated. Most of your efforts should be concentrated on the two first steps because once mycotoxins are present, they are difficult to eliminate. 

  • A list of recommendations for attempting to limit mycotoxin presence in corn has been released by the North Carolina State University College of Agriculture and Life Sciences. The suggested steps include:

    • Early planting

    • Reducing drought stress

    • Minimizing insect damage

    • Early harvest

    • Avoiding kernel damage during harvest

    • Drying and storing corn properly

    • Disposing of corn screenings instead of feeding them to animals

3. Seed hybrids:

If mycotoxins or diseases have been present in previous years, selecting seed hybrids that are resistant to them can reduce the risk and/or the severity of the infection. Some diseases can also be seed-borne, so it is important to be selective with the seed hybrids chosen for upcoming years.

4. Crop rotation and tillage:

Due to the cycle of fungi and spores wintering in the soil and on crop residues, increased tillage and crop rotation are recommended to help control crop residues and potential mycotoxin contamination. Removal, burning or burial of crop residues aids in the reduction of Fusarium inoculum, which could affect the subsequent crop. 

5. Planting date:

The date when seeds or seedlings are planted can also affect the contamination of your crop. Ideally, the flowering stage of the crop and spore release would not occur at the same time, in order to reduce the chances of infection. However, weather changes could challenge any advantages manifested by appropriately timing your planting.

6. Plant nutrition:

Well-nourished plants have more effective defenses. A proactive fertilizer program, accompanied by the best practices listed above, can help reduce the need for chemical pesticide intervention later in the season. 

7. Managing the problem:

Sound management practices in the field won’t eliminate the need for a mycotoxin management plan during storage or at the feed mill — they can help make an unmanageable problem manageable, but no approach is 100-percent effective, and new contamination can occur at multiple points, including during transport and storage. Consequently, mycotoxin risk should be evaluated and addressed throughout the feed chain. 

I want to learn more about recommended crop management practices.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: 'd2b1a74a-d16c-4ea9-b2fd-b17b4c1cfc91'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Crop Science Focus Areas
<>Article Type
<>Regions
<>Image Caption

Preventing mycotoxins from developing is the best option for your plants and animals but it's not always possible having a sound management program in place will help to alleviate any related problems.

<>Content Author

Identify mold growth and protect your feed quality during harvest months

Submitted by lkeyser on Mon, 08/06/2018 - 10:21

Harvest time is here. During this busy time, remember to not only monitor what’s coming in from the field, but also to think about what could be happening in other regions from which you may be purchasing feed ingredients.

Molds and yeasts can grow very rapidly as the weather warms in the spring and in the heat of the early summer months. But what about the end of summer and early fall? The weather across North America was extremely variable this summer — from extremely hot temperatures to drought to floods, week after week. How do these weather patterns affect the crops, and what should you be looking for in your feed this fall?

It is commonly understood that drought-stressed fields do not yield well. Digestibility and overall quality will be poor from feed grown in drought-stressed areas. Can living organisms like molds grow during a drought? The answer is yes: many species of molds will still grow during a drought, or they become dormant and wait for the right growing environment to return. One example of a drought-tolerant mold is Aspergillus. Many times, Aspergillus molds will appear olive green to yellowish in color on infected plants. Aflatoxins come from the mold species Aspergillus flavus and Aspergillus parasiticus. Aflatoxins are carcinogenic and thrive in hot conditions. Aflatoxin B1 can convert into M1 and can be found in milk. If this toxin is found over a set limit, the milk must be discarded. When fed to livestock, aflatoxins cause liver damage, suppress the immune system and reduce protein synthesis.

What about areas under heavy rain?

Several molds are typically found during summers of heavy rain, including Fusarium, Penicillium, Mucor, Rhizopus, etc. Fusarium is commonly found in both normal growing conditions and during wetter months. Many times, this mold first appears white and will change to a reddish-pink color. Under stress, both in the field and during storage, this mold can form many mycotoxins, including the trichothecenes family (DON or Vomitoxin, T-2, etc.), fusaric acid, fumonisins, and zearalenones. Clinical signs that these are present include immune suppression, bowel hemorrhaging, reduced intakes, poor milk production, reduced weight gains, abortions, conception challenges, vasodilation and even mortality.

The Penicillium molds will typically show blue to greenish in color, or potentially white, depending on the host crop. Penicillium molds will typically infect feed during storage, but abnormal weather patterns — such as heavy rains or, sometimes, cooler temperatures — can cause more mold to form. Certain tillage practices can also influence mold growth. When stressed, Penicillium molds can form patulin, Penicillic acid and ochratoxin. Clinical signs that these are present include edema, rumen upsets, loose manure, bowel hemorrhaging and increased rates of mortality.

This is a minute sampling of the mycotoxin challenges that can exist during harvest in your fields. Remember: the commodities or other purchased feedstuffs that are shipped in by boat, train or truck may present their own mold and mycotoxin challenges. Check the origin of purchased feed to determine what stress or abnormal weather was experienced in that region. Your local dealers, nutritionists or Alltech representatives can put together information on mycotoxin results from other regions. If you want to be especially diligent in lessening mycotoxin challenges, an on-farm RAPIREAD® mycotoxin test or Alltech 37+® mycotoxin test will check your feeds for any concerns. Remember, more information on mycotoxins is always available online at knowmycotoxins.com.

I want to learn more about protecting my feed from mycotoxins.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '8790727d-7efa-463c-a020-6d1c151bf545'
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Crop Science Focus Areas
<>Article Type
<>Products
<>Regions
<>Topics
Subscribe to Alltech RAPIREAD
Loading...