Skip to main content
<>Icon
dairy.svg (4.47 KB)

Robynne Anderson: Changing agricultural policy on a global scale

Submitted by lkeyser on Thu, 11/14/2019 - 16:16

As climate change becomes a larger issue, reducing greenhouse gas emissions and finding ways to sequester carbon in farm and food production is more important than ever. Robynne Anderson discusses her experience providing businesses with sustainable solutions as president of Emerging Ag, the international consulting firm for agriculture.

The following is an edited transcript of David Butler’s interview with Robynne Anderson. Click below to hear the full audio.

 

David:                Hi, Robynne. How are you today?

 

Robynne:          Great to see you, David.

 

David:                Thanks! Tell us a little bit about Emerging Ag and what you do.

 

Robynne:          Well, it's a company that’s spread out around the globe. There are 22 of us on the team, and we work on agricultural policy, really, at a global level. So, whether that means working with agricultural trade associations or individual companies or farmer groups or agricultural scientists, we try and make sure the voice of agriculture gets heard in the context of the United Nations and other venues where people are talking about how you set agricultural policy.

 

David:                Okay. That sounds pretty exciting, and you must be doing a pretty good job, because I know that you are in the Canadian Agricultural Hall of Fame.

 

Robynne:          Oh, thank you. Yes, it was a great honor. Yes, my life is very exciting for a girl who grew up in a small town in Dugald, Manitoba, on a farm. I did not expect to get to see so much of the world, and I find that agriculture is just a great unifying part of a lens with which to see the world because, when you get out on to farms, whether it's in Africa or Asia or any other part of the world, there is something about farming that might be done differently. They might be growing different crops, but there's something about the reality of being from a farm that's kind of the same. It's practical. The weather is still a big factor. It's hard work, and those communities are very welcoming.

 

David:                Yeah. You mentioned that weather is a big factor, and of course, that's always been true for farming. There are all sorts of uncertainties around the weather and lots of different variables, which make it very challenging, and it seems like, more and more, that's an even bigger problem, with extreme weather events around the globe. What are you seeing that's a serious challenge for farmers?

 

Robynne:          Well, weather has undoubtedly, as you said, always been one of the toughest parts of farming, and it always seems that the rain never comes when you need it or comes too much. That's been the case in our farm a bit lately, but everybody feels this change from the norm. There used to be patterns; it was always variable, but now, even the sense of the way the seasons work, it really does seem to be changing quite a bit.

                             I was in Kenya for much of the month of March, and their rain season would normally have started about mid-March. I left at the end of the month, and it still had not started. The rains have started to come now, but weeks behind schedule. Really, you get that sense — and for us on our farm in Canada, you see more and more flooding pressure, year on year on year. It's no longer just once every 40 or 50 years that you're feeling that the Red River is going to swallow you up. It's a changing world, and I think this is what is giving extra credence to a discussion that scientists started many years ago, saying something is afoot. We are having too big an impact on our environment.

 

David:                Yeah, and that certainly seems to be true. Because extreme weather and climate change are becoming a bigger and bigger issue, it's very important to look at what we can do to mitigate our greenhouse gas emissions in every industry, not just agriculture, and you spent some time looking at that. So, what do you see that's promising? What are some opportunities we have to do that?

 

Robynne:          Well, here at Alltech, there was an awesome panel, and I was really lucky to be on it with a set of others who were working on all very different aspects of that. Part of what I was talking about specifically is that anything that we do in our businesses, we need to measure. We would never go into a sales program and not know what our target was and what our sales figure was and what our cost of delivering that product would be. We wouldn't be in business otherwise.

                             The same applies, really, if we want to take climate change seriously. That means looking at how we are measuring inside our individual businesses. One of the gentlemen on the panel was talking about actually pricing in carbon into their business planning and in terms of their internal budgeting, but what I was talking about also is the need for the sector as a whole to be engaged in measurement. I use a particular example of the Global Dairy Platform, which has helped to set up the Dairy Sustainability Framework. Now, about 30% of the milk sector, total volume of milk, is actually reporting in through this framework, so that's a really big jump forward, and it's not just about climate change.

                             Climate change is incredibly important, but if we're only looking at it from an agricultural perspective on greenhouse gas emissions, I think we're missing the range of things that we need to be involved in, and that includes looking at water and are we drawing down too much or are we polluting it on the way out. These are very concrete, measurable things, and by reporting in together, we can begin to understand what's happening and actually have a conversation about what needs to be done.

                             One thing that we saw that really surprised a lot of people is that the assumption is that greenhouse gas emissions are highest from dairy production in the developed world — an idea that large, intensive farms would be naturally more polluting — but, in fact, the efficiency of those productions shows that OECD countries have been consistently dropping their greenhouse gas emission rates, and they're really quite low. They're not down to zero, but they're really quite low, whereas in developing countries, where animals may go a dry season without being able to be fully productive, all of the emissions-related intensities are actually much higher, because they don’t have that production efficiency.

                             That's really important to understand, but I think it's also very true that, if you consider the emission discussion, it's great that dairy is down 11% in the past ten years in terms of how much carbon we're releasing for every liter of milk we produce, but if you consider that the world still continues to need a total reduction in carbon, you have to be looking, in agriculture, to make use of agriculture's great asset, because agriculture can also do carbon sinks. That is what we do, right? We grow stuff. We put carbon into the soil. We take carbon out of the air for those plants. The opportunity really does exist for all of us to be looking at a net-zero emission intensity, or below, because if we do the right things on our farms, we can get to that level so that we can grow the amount of milk we're producing that's needed in the world but do it in a way that isn't actually helping to destroy the world through releasing too much greenhouse gas.

 

David:                Yeah. That opportunity that agriculture has is very exciting. Can you talk a little bit about some of the practices that can help sequester carbon?

 

Robynne:          Absolutely. If you're thinking about a farm as having a land footprint, what kind of things are you growing on that land? Farmers can do concrete things, like plant more trees. A lot of farms actually already have trees around their houses to help protect them from weather, ironically, so what are you doing to put long-term crops? If you're looking at the livestock sector, pasture is a great carbon sink — you managing that pasture well and protecting it. Also, if you think about the dairy sector, for instance, anaerobic digestion, manure management and sequestering that into a facility where you are actually producing renewable energy is an incredibly powerful part of reducing the greenhouse gas footprint of your farm.

                             Farms actually have a lot of lands, so whether your dairy barns have solar energy panels on the top of them; you're using, perhaps, manure management; maybe you're taking local food waste products and putting them in with your manure manager to further that energy production; you can look at a wind turbine on your farm — but farms really can get energy, neutral or renewable energy, sourced. Even some farms are now moving to actually put onto the grid renewable energy, which gives it a double whammy, and that's how you can get to that negative footprint level. There's just such an incredible opportunity of managing well, of using conservation tillage, of really thinking about how you are engineering that system.

                             The great thing is, at the promised end of that is actually the potential to earn some money from that energy you're putting back into the grid, especially if you're working in collaboration with others. There's an opportunity for it not only to be the right thing to do, but to be a really good business decision.

 

David:                Yeah. When you're talking about earning money, you're talking about selling carbon credits to other businesses?

 

Robynne:          That is an opportunity, but I am thinking, actually, about putting electricity back onto a grid. You get paid for the electricity you generate, so that's a clearer path to a business.

 

David:                Okay. I suppose electricity and energy use in general is kind of a small percentage of the carbon footprint from the farm, but a farm has the potential to generate much more electricity than that and offset nearby homes or businesses and balance the equation, right?

 

Robynne:          Exactly. Whether you're making a compressed natural gas or a conventional electricity product, that is exactly the opportunity that farms have this resource available to them, because they have a land footprint. Now, you need to work collaboratively with your local electricity grid to be part of the renewable sources there. Some farms are working quite well together to achieve that. You see some of the cooperatives, for instance, in the dairy sector working together to get their members having a bulk-buy onto the grid, because getting access onto that grid is the challenge, but energy is actually quite a high input cost in a lot of farms. So, even if you got your electricity cost down in your own operation, that would be a big benefit, and then, to produce a surplus that you could actually use as a revenue stream is just one example of how you can really get to zero, because everybody says that's impossible, but farms really have this unique opportunity — and especially how they manage their carbon sinks on their farms, as well.

 

David:                It would be fantastic if many more farms were at zero greenhouse gas emissions, because there's so much negative publicity about the amount of greenhouse gasses that are produced on farms. You mentioned a little earlier that it's very important to look at data. You had an example yesterday that shows it's important to look at the data in multiple ways, when you were talking about the carbon output of New Zealand, Ireland, and the different ways you can look at that.

 

Robynne:          It is a strangely quirky thing that, when you look at a chart about greenhouse gas outputs, New Zealand and Ireland pop higher than countries like China and some other places that you would expect would have much higher greenhouse gas emission implications.

 

David:                And you're saying from the dairy sector specifically, right?

 

Robynne:          That is the calculation — is because both of them are very effective dairy producers — that this is counting very high in what the proportion of their greenhouse gas emissions are. Does that mean that two countries that have a very moderate climate, perfectly adapted to dairying, that have beautiful grasslands, that are easily maintained through natural rainfall, aren't the best place to produce milk? Really, what's counting against them is they are such a good producer that they are exporting milk and serving the rest of the world, but because that production happens in their country, they carry 100% of those emissions, but if you went off and set up a dairy — and I'm going to pick an arbitrary country here — in Amman or in the middle of a desert somewhere, it is not going to be, probably, a more greenhouse gas-efficient or more environmentally sustainable solution because it's happening in that other country, because you're going to have to irrigate that land. You're not going to have the same natural cycles. You might, potentially, have to provide cooling to those dairy cows to be productive, because they're not used to that kind of heat.

                             The result will be, actually, potentially, a bad outcome if we don’t find ways to recognize where we produce things efficiently. The current discussions about climate change actually really hone in on a country's responsibility for what they're producing, and that makes a certain amount of sense, but when you're talking about global trade — especially in food — it's really important that we also find a way to make the right decisions globally, that we're not turning over lands that are inappropriate for some things and making them into lands that are, therefore, being used. Because, as a Canadian farmer, I don’t think we're going to be growing mangoes in Canada. We will have gone a long way down the climate change path if, suddenly, banana trees and tropical plants or mangoes are growing in the middle of Canada. We grow some other things really, really effectively, and I think you can see that paradigm potentially going in the wrong direction.

                             If I might just add one more thing to that, it's really important to consider that, as we're having more extreme weather, that trade becomes even more important. You just don’t know what's going to hit where, who's going to have a drought and who's going to have a cyclone and who's going to have a flood.

                             One of the things that the FAO produced recently was to talk about just how important global trade is going to be in food. It's always been important, but it becomes our backup system to food security, and so, it is really important that we think about how to manage this in a way that the trade is actually encouraged and that the best, most ecologically sound producers are being encouraged to use it.

 

David:                Yeah. I'm sure it's incredibly difficult to write global agreements or treaties on things like greenhouse gas emissions, and there's certainly a potential for some inadvertent mistakes. When you're looking at greenhouse gas emissions on an industry per-capita for a small country that excels in that industry, the number looks horrible, but if you look at it per liter or gallon of milk, it's a completely different picture, right? So how do we tell that message and make sure that those decisions are being made in a sensible way that makes good policy for everybody?

 

Robynne:          Well, it is really challenging. I've had the opportunity to go to some of the UN climate change meetings or very large meetings. There's a lot on the agenda. It's a really complicated process. One thing they deserve a lot of credit for is that the climate change negotiations have really heard from NGOs and businesses and scientists alike, so it's a space where having a serious conversation is possible. As we've moved to getting serious about national emissions, the inequities of this position become more clear, and it is possible to then say, “Okay, now we understand that. In a way, we didn’t understand it before,” and the agricultural sector has to be doing those numbers, has to be doing those measurements, so you can explain that the efficiency level on this is very high.

                             There are some dairy farms in America that are getting to zero, so it's not impossible; it is actually really happening. You want to make sure that the discussions to advance our goals of cutting greenhouse gas emissions don’t create perverse subsidies for the wrong sorts of actions. For instance, strangely, if you were to till under all that pasture and grassland in New Zealand or Ireland, you might argue that once they went back to pastureland, they would get a carbon credit for creating a carbon sink, but they would've done something that actually caused more release of carbon so that they could get the credits for doing it. So, we really want to find ways to talk about agricultural production that have the practical voice of farmers there and don’t lead countries to make decisions to hit numbers that actually lead to the wrong outcomes.

                             It is a complex piece of work to navigate that, but we didn’t get to climate change without doing a lot of complex things, so it's going to take a fair amount of concerted effort to find a path forward.

 

David:                Yeah, good point. There's certainly a lot of accounting and measurement that we need to do to make sure that we're mitigating climate change, but it's very important to get that right. If we think we're doing everything we need to and we're not making the right decisions, we're in a lot of trouble.

 

Robynne:          We've just discussed the weather lately. I think we're in some trouble, and now, it is really about the path to get out, but you don’t want to make the path to get out worse. Like anyone finding their way out of a forest, we'll probably make a few wrong turns, but we want to at least be headed towards the edge of the forest, not going deeper in the other way.

 

David:                Are there things going on right now in the industry to try to help reduce emissions for low- and middle-income countries that have, traditionally, low productivity?

 

Robynne:          Some, but not remotely enough. It is a strange thing that agriculture receives very little of the global development budget. Only about 5% a year of all of the money that's going into development assistance goes into agriculture, even though 80% of the people living in multidimensional poverty — which means that they live below $1.25 a day — they don’t have access to schools. They don’t have access to hospitals. They live in rural areas, so they're farmers.

                             Eighty percent of the world's most needy are in a rural context, and yet, only 5% of development money going to agriculture is already wrongheaded, and then, on top of that, if you consider that, of that 5%, only 4% goes to livestock. We're talking about minute amounts of the development budgets going to important factors where they're needed, and many communities in these areas actually have a very strong livestock tradition.

                             So, it's really important that more gets done, but there are some things happening. There's the International Livestock Research Institute, which is based in Kenya but operates quite globally in the developing country context. I have the good fortune to work with them on a number of things, but there are some really innovative things that they've been part of the leadership on. One of them is Indexed Livestock Insurance. If you're in a situation where there's a drought, there's extreme weather, rather than doing what we've traditionally done — which is to say, "Here's livestock insurance. We're going to wait until that animal dies," so your herd is wiped out and an entire community that might be based on that herd has had their lifestyle devastated; they're perhaps nomadic, they're in a situation that they have completely destabilized the population — instead of taking a look at overall weather trends, seeing that clearly there is a drought. The Indexed Livestock Insurance actually is meant to buy feed for those animals so that they are in a position to make sure that those animals don’t die. So, rather than waiting until a terrible outcome and suggesting that you can just buy back your loved one — if you were to use a hospital analogy right, you don’t treat them at all while they're starving to death, but afterwards, you give a big payout for their death — you should do the opposite. You should get that assistance in.

                             It's a really simple, concrete thing that, if you're in agriculture, of course you should send in feed, but we've really struggled to get that kind of practical agricultural lens onto a lot of the interventions.

 

David:                That's a really good analogy. It needs to be more like health insurance and less like car insurance, right?

 

Robynne:          Yes.

 

David:                All right. Well, thank you so much for your time today, Robynne. It was great talking to you.

 

Robynne:          Pleasure.

Robynne Anderson spoke at ONE: The Alltech Ideas Conference. Sign up to hear other presentations from ONE19. 

Sign up for Alltech Idea Lab

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Crop Science Focus Areas
<>Article Type
<>Regions
<>Topics
<>Image Caption

Emerging Ag works with trade associations, companies, scientists and farmers to make sure the voice of agriculture is heard. 

<>Content Author

Feed management technology: Ag-tech’s missed opportunity?

Submitted by lkeyser on Fri, 11/01/2019 - 09:38

Technology is disrupting and changing every aspect of the agriculture industry, and, for the most part, farmers are embracing it. Already, autonomous robots are taking over the milking of cows, grading of fruit and vegetables and many other duties on farms around the world. Advancements in electric-powered vehicles could also mean that, before long, we will be enjoying the near-silent purr of electric, eco-friendly tractors in our fields. With $2 billion invested in ag-tech in 2018, this is just the tip of the agriculture technology iceberg!

As far as innovation and investment go, however, there is one section of the industry that is struggling to keep up with the rest: feed management technology. At the same time that drones are surveying our land and self-driving machines are harvesting our crops, many farmers are still managing their feeding using old, outdated technologies — or, in some cases, pen and paper.

This seems to be a major oversight of the industry, considering the potential savings and efficiencies at stake. Animal feed and nutrition is one of the most critical areas on livestock farms, accounting for up to 70% of the cost of production (COP). A modern solution that could help to increase feed efficiency should be shouted from the rooftops!

Thankfully, while feed management technology may be bringing up the rear in terms of innovation, it still has not dropped out of the race altogether. There are many established names currently offering platforms that are both effective and affordable.

The benefits of using modern feed management tools are indisputable. Both in the long and the short term, updating your methods of managing feed on-farm has the potential to improve not only herd output but also overall herd health.

Maximize income over feed cost (IOFC)

IOFC is a critical measure in driving farm profitability. One of the key benefits of using feed management technology is the ability to continually track and maximize this figure. Central features of such a platform include the precise loading of individual ingredients and the subsequent TMR mixing, tracking of feed intakes, management of feed costs and the direct linking of outputs to inputs — all contributory factors in optimizing IOFC. Where IOFC is not meeting targets, problems are quickly identified, and necessary changes can be made in real time.

Feed inventory management

Keeping track of feed inventory on-farm is a notoriously manual task that usually involves significant guesswork. This leads to farmers carrying too much feed, tying up both space and capital, or too little feed, which presents a whole different set of management challenges. Feed inventory management is a common feature within most feed management platforms, allowing farmers to accurately monitor and balance quantities of feed given to the animals against quantities of feed held on-farm. Depending on the system, automatic alerts notify when stock levels reach a certain point, and in some cases, automatic re-ordering (via links to feed mills) can be set up.

Cows crave consistency

What is the one thing that cows love more than anything else? Consistency. Cows are creatures of habit, and a consistent management routine leads to optimal dairy production. This is especially true for feeding; the more consistent a cow's daily diet, the better the cow will perform in terms of milk output, fertility and overall health. Any disruption to a cow’s rumen environment can quickly result in sub-optimal output, an issue that can take weeks to reverse. Feed management technology allows for the precise loading and feed-out of each ration, ensuring that animals will receive a consistent diet every day. When combined with a diet feeder, such as a KEENAN MechFiber, the software can tell farmers the optimal loading order of the ration. This means that the end product is the best-quality mix possible. It also helps to negate any human error, so no matter who is loading the machine, the result is always the same.

Make it easy for anyone to do the feeding

On most farms, there is usually one person assigned to manage the feeding operation and ensure that the correct protocols are followed each day. However, what happens if that person is not available and the person who fills in is not as attentive to good feeding practices? Overall cow performance and health can quickly suffer if diets change from one user to the next. Using technology to manage feeding on-farm ensures that, no matter who is in charge, once they follow the loading and unloading instructions provided by the feeding system, diet consistency should not be compromised. This guide to TMR feeding is almost foolproof. Equally, as all data is recorded, it is easy to identify if labor performance has not met the expected standards. 

Control of feed cost

Of course, there is another major benefit to this precision: control of feed cost. This is where feed management software can really make a difference on-farm. By taking stock of what ration goes into the mix, as well as the amount, the program can keep on top of costs, so the farmer knows exactly how much they are spending. Beyond this, by ensuring that the animal's diet offers optimal efficiency, further savings can be made by removing wasted feedstock from the process.

Progress reporting and data-sharing

The abilities of feed management software go far beyond the day-to-day running of a farm. As it is monitoring diets and ration stocks, the program is also recording and storing all of the data it collects. This means that farmers have access to a library of information at the push of a button. They can generate detailed graphs and reports that illustrate what has gone before, helping them to make informed decisions about the future.

Bringing this feature one step further is the cloud-based technology of modern feed management software. By availing of these wireless capabilities, farmers can share information and data with employees, meaning that everyone can be kept up-to-date and share advice. Equally, where access to the technology is provided to the farm’s third-party consultants, communication is improved, and adjustments to animal diets can be made in a more proactive and timely manner, without the need for consultants to be on-farm.

Adaptability

Another great benefit to the cloud-based aspect of modern feed management software is that it opens the program up to previously unseen flexibility and adaptability. Many programs can now link up and operate in conjunction with other management software that a farmer may be using. For example, a farmer in the dairy industry may be using one program for feed and another for herd and milk production. By allowing these programs to work in tandem, dairy farm data management becomes more streamlined, saves time and, most importantly, allows for the generation of more actionable insights.

The thing to remember is that the points outlined here are not just something that farmers can hope to take advantage of in the future. There are already numerous established companies offering technologies to help deliver on these promises. Furthermore, there is a noticeable upsurge of dairy ag-tech startups advancing on the pre-existing technology, meaning that dairy automated feeding technology might finally reach its much-needed potential in terms of agricultural innovation.

One such platform is InTouch. Cloud-based and combining the latest in hardware and software, InTouch manages the feeding of over 300,000 cows in 37 countries worldwide each day. As part of Alltech, InTouch utilizes user-friendly dashboards and reporting tools to provide farmers and nutritionists with the most relevant insights and analytics for delivering optimum nutrition to the herd.

Collaboration with other on-farm technologies is a key principle of InTouch, which is the reason behind the recent announcement of its integration with UNIFORM-Agri, one of the world’s leading herd-management software providers. Collaborations like this reduce the need for the manual input of data, deliver more effective insights and ultimately enable both farmers and nutritionists to work together to make more informed herd-management decisions.

Continuing the tradition of innovation at InTouch, the team showcased InTouchGo at ONE: The Alltech Ideas Conference in 2019. Currently in the proof-of-concept stage, this all-new technology uses advanced analytics and features — like machine learning — to deliver automatic ration recommendations directly to the farmer’s smartphone in response to changes in milk output.

Alltech’s commitment to a Planet of Plenty™ also features in the InTouch vision. Modern agriculture is under continuous pressure to demonstrate its sustainability credentials, and increased animal productivity has been shown to reduce the amount of methane produced per unit of milk or meat. Feed conversion efficiency, one of the most widely used measures of animal productivity, is the measure by which livestock convert feed into milk or meat. Adapting technologies like InTouch to increase feed conversion efficiency as part of a wider on-farm nutritional strategy may be one solution to this growing and complex challenge.

 

I want more information on dairy cattle nutrition.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

The benefits of using modern feed management tools are indisputable. Both in the long and the short term, updating your methods of managing feed on-farm has the potential to improve not only herd output but also overall herd health.

Alltech and Alimetrics collaborate on in vitro tool for estimating ruminal protein degradability

Submitted by mdaly on Thu, 10/10/2019 - 09:29

Meeting the protein requirements and improving nitrogen efficiency in cows under different physiological conditions can become more precise with the use of this additional  tool for diet formulation

 

[DUNBOYNE, Ireland and ESPOO, Finland] – An innovative laboratory fermentation method for assessing the ruminal breakdown of dietary protein ingredients has been created by Alltech and Alimetrics Research. The novel technique was developed to evaluate feed protein sources and involves measuring the proportion of certain amino acids that is converted to specific end products over 24 hours.

Scientists from Alltech and Alimetrics collaborated on the study, which has been published in the scientific journal Frontiers in Veterinary Science and compares the rumen degradability and effects on rumen fermentation of three protein sources: whey protein, soybean meal and yeast-derived microbial protein.

The assessment of protein degradation in the rumen of live animals has historically proven difficult, and although analysis of overall protein can be done, tracking the origin of protein from a specific feed component cannot be done with great certainty. In addition, ruminants have a low overall efficiency of nitrogen utilisation, with between 70– 95% of the nitrogen in diets excreted in dung and urine, according to the Food and Agriculture Organization of the United Nations. The use of this novel in vitro technique can help to overcome such challenges as it allows protein sources to be ranked according to their degradability by rumen bacteria.

“When it comes to comparing protein sources, we believe this tool is particularly useful when some known and commonly used benchmark products, such as soybean meal, are included in a study,” said Dr. Juha Apajalahti, managing director at Alimetrics.

Data from the study indicate that the yeast-derived microbial protein was the most resistant of all three protein sources to being degraded in the rumen, with less than 15% of the amino acids of interest being converted to end products measured. Additionally, the study showed that the level of the protein breakdown product, ammonia, from yeast-derived microbial protein was able to be taken up by the rumen bacteria, reducing excess rumen ammonia accumulation. Evaluation of other parameters demonstrated that the yeast-derived microbial protein was able to extensively stimulate rumen fermentation to the same extent as soybean meal.

These data not only suggest that this novel method is suitable for assessing ruminal breakdown of protein feeds, but also that yeast-derived microbial protein could potentially provide a more sustainable, and equally suitable, alternative to products such as soybean meal.     

“In terms of research methodology, this provides us with a robust model for screening products, both for fermentation effects and the ability to bypass protein through the rumen,” said Matthew Smith, vice president at Alltech. “The findings from this study clearly demonstrate the value of our yeast-derived microbial protein in stimulating rumen fermentation and volatile fatty acid and microbial biomass production. The tool itself is one we can use in our own in vitro fermentation model, Alltech IFM™, to aid future development.”

Click here to view the research article.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Topics
<>Programs and Services
<>Image Caption

Scientists from Alltech and Alimetrics have collaborated on a study which compares the rumen degradability and effects on rumen fermentation of three protein sources: whey protein, soybean meal and yeast-derived microbial protein.

Pat Crowley: Mitigating mycotoxins economically

Submitted by rladenburger on Fri, 09/27/2019 - 13:43

Mycotoxin contamination can affect even the most well-run dairy farms. Pat Crowley, on-farm specialist at Alltech, details how farmers can reduce the cost of production on their dairy farms by detecting mycotoxins early.

The following is an edited transcript of Tom Martin’s interview with Patrick Crowley. Click below to hear the full audio.

 

Tom:              Patrick Crowley is an on-farm specialist at Alltech based in the dairy capital of the USA, Wisconsin. He has over 23 years of experience in the dairy industry and is known to be the silage expert on the team. He works with dairy producers, nutritionists and consultants, troubleshooting a range of issues on farms in the Midwest. Among those issues is the management of mycotoxins. He joins us to provide an update on efforts to mitigate the risk of mycotoxins without breaking the bank. Thanks for being here, Patrick.

 

Pat:                 Thank you for having me.

 

Tom:              So, if you would, bring us up-to-date on the mycotoxin issue. What are you seeing as you work with producers?

 

Pat:                 This year, when I look back and see what we're looking at and finding on dairies this year, I’ve really got to go back to last fall. Last fall, we had a tremendous amount of rain. We're predicting it was the wettest fall in over 100-plus years that we have had, so we go back there and we identified this risk and the weather challenge. What we did, we brought it to the dairy harvest analysis, a North American Harvest Analysis. What that is, is we randomly checked corn silages out on the dairy, just spot-checking them. We did about over 100 to 150 different samples, and what we're looking at is what mycotoxins were coming off the field before fermentation, before storage, before feed-out, so we really understood what was out there. When I look back to the average sample, if you take all the samples' average amount, it was 6.25 mycotoxins per sample, and that's fresh out of the field. The main mycotoxins that we were seeing were the type B trichothecenes, the DONs, or some people would call the vomitoxins, the fusaric acid and the fumonisins. They're really, would you say, the bat on what started to come in off the field before we went through any type of fermentation process.

 

Tom:              Could you put that level in perspective? What does that mean?

 

Pat:                 Great question. We've done this harvest analysis for the past four or five years, and we started from 2.5 mycotoxins; then, next year, we're at 3.5. The next time, we're at 5. Now, we're at 6.25 average number of mycotoxins per sample. Year to year, it just steadily increases a small bit, which becomes concerning — but what I'm very happy to see is more people are understanding mycotoxins, what it can do, where they're coming from and how we can work with them, and it brings us to what we're doing today.

 

Tom:              So that measurement was taken last fall and, of course, winter sets in.

 

Pat:                 Correct.

 

Tom:              Do you see an explosion when warm weather arrives?

 

Pat:                 Yes. A lot of people got into their 2018 corn silage, some as soon as December; some were just getting into it here in March. The mycotoxins, when we look at the mycotoxins that we bring in on a fresh sample, that level will not go down, so we're going to have that base level no matter what. What we want to do is create an environment that doesn't increase through storage and fermentation. So, when these people are getting into their 2018 silage in December to March, we kind of hit a brutal winter in the Midwest. Everything was held at check or at bay with the mycotoxins, but once we started receiving warm weather, a little bit of moisture in the air, things started to thaw, we did see an explosion of mycotoxins — and a few new mycotoxins, such as zearalenones and the penicilliums, which is a storage mold mycotoxin. It became much, much more prevalent.

 

Tom:              Could you translate that level that you detected into consequences? What does the threat look like?

 

Pat:                 The threat is real. The threat is absolutely real, but the important part is understanding what the risk is. A lot of times, we use risk. What's your mycotoxin risk? It's similar to your threat, but we need to understand that we need a test for it, and then we work with the producers. Can we dilute it? Can we understand where the mycotoxin is coming from? Say it's from corn silage. Can we reduce a rate to reduce the risk to the animal, or are we going to have to look at mitigating this with a product of some sort?

 

Tom:              Is research into that possibility underway?

 

Pat:                 Absolutely. Our recommendations and our understanding currently on the mycotoxins is all research-based, so that absolutely gives us leaps and bounds’ advantage over our competitors, but mainly, when you sit down and look at it, it gives us a great advantage to work with the producers to have a complete understanding of what's going on, what we may see, and how do we want to deal with it. So, everything is research-based, and that's where I really find out truly where the value of what our knowledge is and our services are.

 

Tom:              Which regions are most effected? Where is it most prevalent?

 

Pat:                 Mycotoxins are everywhere. I wish they were just regional-specific or region-specific, but unfortunately, they're not.

 

                        Each region has their different temperatures, climates, storms, weather patterns, so every region is unique in what type of mycotoxins they may have, but I don't feel any region is safe from mycotoxins. It's going to be everywhere. It's just a matter of what type of mycotoxins, and it changes from up in Wisconsin in the dairy land compared to down in Texas. We're going to deal with different mycotoxins than what they're going to deal with.

 

Tom:              So how do you go about actually detecting the presence of mycotoxin contamination?

 

Pat:                 Well, we go out to the dairy and walk through the forages, have the discussions with the producers, the dairy farmer, the herdsmen, the crop people, and we evaluate the forages. So, we go on-farm and we look at their storage units, whether it would be a pile or a bunker or a bay unit. First, we look just for simple visual identification. Can we see bad areas, spoilages, molds that are producing mycotoxins? Can we see them with our eyes? Some cases, yes, some cases, no, but then we take the next step and we use — I personally use a thermal-imaging camera, so I can look at the units, the storage units, and more closely be able to identify stresses or challenges in that unit that you can't see with the naked eye, and have a better understanding.

 

                        After that point, a lot of producers want to — we want to test for it. We want to go out and test for mycotoxins. We want to be able to have an accurate understanding of what we're dealing with, if we're dealing with anything, or if we're dealing with a large situation that could blow up. I really lean on — and probably it is the biggest and the best tool I have, my resource — that's the Alltech 37+® lab in Nicholasville, Kentucky. They are an amazing group to work with, with good response. They are able to test for over 50 mycotoxins that we know, that our research — that we have research and understanding what these mycotoxins are, what they can do, and how do they act with other mycotoxins. We can relay that into what we call REQ, our Risk Equivalent Quantity, to the dairymen and say, "This is your risk," but that's the best one. That's by far my best tool in my toolbox right now.

 

Tom:              How about the animals themselves? Can you detect whether or not an animal has ingested mycotoxins?

 

Pat:                 Absolutely, and that's a lot of what I do on-farm — very visual, hands-on. I’m passionate about cows. I do walk a lot of cows and talk to a lot of producers and herdsmen, but absolutely, you can see that, and it ranges from changes in dry matter intake, fluctuation in milk production components, whether it'd be butter, fat or protein. Walking the pens, it could be inconsistency or variability of manure, spit-up cuds. Spit-up cuds is a classic sign of very, very high DON levels, where they're spitting their cud. There's a tremendous amount of what you can see from the cow. In all honesty, the cow tells the whole story. The cow is where you need to read and understand where the changes are. What's happening? How does she look? Is she rough coat? Thin coat? Is she moving well? All of these factors go into, “Do we have a challenge or not?”

 

Tom:              In the introduction, I mentioned how to mitigate the risk of mycotoxins without breaking the bank. What kind of strategies can producers follow to affordably manage mycotoxin risk?

 

Pat:                 Great question, especially with the dairy economy, where it's been and where it is — and hopefully, it is improving, but at a slow rate. Initially, I understand the risk, and that's why we rely back on the testing, then are we able to — the saying is “the solution is dilution.” Can we dilute the specific feed ingredient while there's a byproduct of corn silage where the mycotoxins are coming from on the dairy? Can we dilute that to lower the risk to the animal? Sometimes you can, sometimes you cannot. At that point, if we can't reduce it, we look at research-based products.

 

Tom:              Are there some other things that the producer can do to prevent the development of the mold in feeds?

 

Pat:                 Absolutely. When I visit with a lot of dairymen, they want to know, "What can I do better next year? What can we change? Is there anything we can do on farming?" Great question. Yes, absolutely, there's stuff producers can do, and it really starts in the field, anywhere from your tillage practices, turning the soil so the soil microbes can break down our residue, our trash, our corn stalks, the leaves, whatever is out there —  allowing that to happen, but also crop rotation, rotating your crops. In the dairy land, we're fortunate; we can rotate corn to alfalfa to beans to wheat and continue that and break the cycle of some of these molds and mycotoxins that may be in the field, but there are areas that don't have that, and they're not able to do that because, possibly, they're sloped, the lay of their land, you would say, where they're going corn on corn on corn on corn.

 

                        Every year we do that, we're increasing the risk of mycotoxins to attack the plant health, and that's what we're really trying to do. When I have those conversations with dairy producers, my question back is,
“What can we do to increase plant health?” Because that's where we want the plants to be able to fight off these mycotoxins as best as they can.

 

Tom:              I know that you've actually developed a four-step guide to making great silage. Could you give us a brief description?

 

Pat:                 Yeah, just very simple, nothing rocket science, but your first step would be seed selection — selecting the right seed, the right variety, the correct variety for that specific dairy, whether it's digestibility, yield, starch levels or whatnot. Starting there, always starting with the right seed, then it goes into harvest. We're going to jump right into harvest, correcting it, correcting the moisture, getting the correct chopper length, harvesting as fast as we can and putting it away as fast as we can. That's a crucial part, just because Mother Nature doesn't always give us the windows that we need to harvest, so when we go, we need to be at the right time and get it done quickly.

 

                        The third step is storing it — getting it to the piles, getting it to the bunkers, the silos, the bays, wherever you would have it harvested — doing it quickly, packing it, trying to pack or remove the oxygen so fermentation can take place quickly and adequately to create a more stable feed. Lastly, it's definitely feed-out. We can do all those things right, but when it comes time to feed the animal, if we don't feed enough face per day, we're not removing spoilage or molds or whatnot and feeding it to animals. We're creating more issues. So, really, the four steps: the right seed; harvest correctly at the right moisture, chop length; packing it well, taking the oxygen away; and then feed-out, being on our toes, understanding, removing the junk, if there is any — and also even testing, just so we have an understanding of what's going on.

 

Tom:              Listening to this conversation, Patrick, is a reminder that farming really is not only hard work, but it's complicated work. It's intellectual work. You've got to be a scientist.

 

Pat:                 Producers, dairy producers, crop producers, with technology advancements, we're out there to help them. We want to be a part of their team because, in all honesty, their experience and their knowledge is just as great if not greater than mine, so I want to bring more to the team, but I'm not leading the team. I want to be part of the team to help resolve their issues. It's very complicated. They're doing a great job. It's just a lot to do.

 

Tom:              And I know that Alltech has actually launched an On-Farm Dairy Support team. How is that team actually getting out there and working with producers? Much of what you just said, or more?

 

Pat:                 Yeah. We have the on-farm team, a very talented, very diverse group of people across the area, whether it'd be across the U.S., or even some of us go to different countries — but very talented, very diverse, and we focus on four main categories. That would be the forage quality, which would be more like what I would be doing out on dairies, but also herd analytics, cow comfort, talent development, employee development on-farm, but we're bringing — with a team that's so talented and diverse, we're able to bring value, knowledge and service out to the producers to help them achieve their goals, help them find and discover the bottlenecks, the challenges, how do we get over them, how do we move on, how do we help them achieve their goals and maximize profitability, increase efficiency? We're bringing a value to what we're doing with Alltech.

 

Tom:              Patrick Crowley is an on-farm specialist at Alltech. We thank you so much, Patrick. Very interesting.

 

Pat:                 Thank you.

I want to learn more about mitigating mycotoxins on my dairy farm. 

<>Premium Content
Off
<>Featured Image
Mycotoxin management should be on every feed producer and farmer's radar.
<>Date
<>Featured Image License
Off
<>Hubspot
<div>&nbsp;</div>
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: '8790727d-7efa-463c-a020-6d1c151bf545'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Image Caption

Mycotoxin management should be on every feed producer and farmer's radar.

InTouch and UNIFORM-Agri collaborate to drive even greater dairy farm efficiency

Submitted by mdaly on Tue, 08/27/2019 - 08:45

[DUNBOYNE, Ireland and OOSTERSINGEL, the Netherlands] – InTouch, the award-winning feed management platform, and UNIFORM-Agri, one of the world’s leading herd management software providers, are pleased to announce an exciting new data-sharing collaboration, empowering dairy farmers with cutting-edge insights and herd management tools.

Each day, InTouch manages the feeding of over 300,000 cows in 37 countries worldwide. As part of the animal health and nutrition company Alltech, InTouch puts particular focus on providing farmers and nutritionists with the most relevant insights and analytics for delivering optimum nutrition to the herd. Creating a link between InTouch and UNIFORM-Agri’s herd management platform to automatically share herd data will further enhance the value of insights that can be provided. This collaboration will also reduce the need for manual input of data and ultimately enable both farmers and nutritionists to work together to make more informed herd-management decisions.

“At InTouch, we continually strive to evolve and deliver the best service to our customers,” said Conan Condon, director of InTouch. “Collaboration is a key part of this, and we are delighted to now work with such a respected name like UNIFORM-Agri to enhance our user experience. Together, we can provide the most effective insights and ensure that the herd’s diet can be quickly adapted to any changes in milk output.”

This desire to provide the best service possible is shared by UNIFORM-Agri, which for decades has been working together with dairy farmers globally to improve management efficiency.

“With UNIFORM-Agri, we want to support dairy farmers and their suppliers worldwide with the best and most user-friendly software solutions that help to build a profitable and sustainable business,” said Harm-Jan van der Beek, managing director of UNIFORM-Agri. “Working together with a partner such as InTouch helps us to achieve the goal of making it easier for the dairy farmer to gain more insights into the herd, leading to better results.”

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Programs and Services
<>Image Caption

InTouch and UNIFORM-Agri have announced a collaboration in which herd data can be automatically shared between each platform, reducing the need for manual input of data and delivering a more proactive approach to herd management.

Jorge Delgado: Retaining talent in the dairy industry

Submitted by rladenburger on Mon, 08/12/2019 - 16:06

How do you attract and retain dairy farm employees? Jorge Delgado, dairy advisor with Alltech, highlights how the labor force in dairy is changing and the importance of creating a culture of respect on farms.

The following is an edited transcript of Kara Keeton's interview with Jorge Delgado. Click below to hear the full interview. 

 

Kara:              I'm here today with Jorge Delgado, one of Alltech's elite dairy advisors. Jorge, tell me what that title means.

 

Jorge:             The elite advisors are all the on-farm advisors for dairy. We have a group that is called the On-Farm Team and, under that team, we have several consultants with different roles. Some specialize in forage management; some specialize in analytical housing. My role is specializing in assisting dairy producers with managing labor — so, human resources.

 

Kara:              Well, labor is one of the most important aspects of any dairy, as we all know. How is the labor force on today's dairy changing?

 

Jorge:             I think the supply is changing. There are less and less people looking for jobs, first, in agriculture, and second, the supply is just short. Before — if we go back 10 years or 50 years, back in time — there was a lot of supply coming from mainly Mexico and Central America. That supply is short now based mainly in immigration rules, and second, these people are filling spaces that people here in America are not doing, especially related to labor — so, hands-on jobs. Those jobs are being filled with labor from Latin America, so agriculture is competing with the rules put in place now with immigration and, also, with all the other companies where people are not able to do jobs by hand. Those are the two main things.

 

Kara:              And not everyone is interested in working on the farm with our hands as much as there used to be, I think.

 

Jorge:             Yes. It's really hard, so that's the first thing that we have to take for this conversation. If you ask individuals in America what they want to do for the future, nobody is going to answer that they want to milk a cow. Even if you ask people that are coming to America to look for a job, they don't want to do that either. We all have dreams, and they only want to do a better job, find a better job, find a better place where they're close to community, where they're close to the cities. Nobody likes, or very few want, to work in agriculture — not only in dairy, but agriculture as well. That's why it's very hard to keep people and retain people working in agriculture.

 

Kara:              Now, this is not a new challenge though for the dairy industry. Labor has always been a challenge. As you were talking about immigration and so forth, that is really probably one of the bigger changes than previous generations. Is that correct?

 

Jorge:             It is. It is one of the biggest changes. It's always been there. Of course, we want to live in a country that is peaceful and safe and there's plenty for everybody, and we have to protect our borders. That is for sure. Generation through generation, every president worked around rules and regulations about immigration. There have been more ideas generated by this actual government, but those things are not new; they are the same. There are more and more people actually coming from Central America and Mexico, to come here and look for jobs, because the situation in those countries are becoming very hard to live with for those kinds of people. Again, the problem here becomes how we can attract people to work in agriculture, and how can we keep the people in agriculture working for the dairy industry and all the other industries.

 

Kara:              As you mentioned, retaining those good workers is difficult. As we find the talent we need, what are you seeing as the key to helping retain those individuals on the farm and in our dairy industry?

 

Jorge:             I think what we've seen today here in ONE (The Alltech Ideas Conference [ONE19]), I think, is a very good example of what are the things that you can do. What I mean by that is that you have to create a culture. You have to create a culture where employees feel that there are values, there's respect. Unfortunately, in the dairy industry, before, when there were plenty of workers, they were not thinking about creating a structure or creating an organization or creating a culture to retain people. Now that those times have changed and they're more difficult, the dairy industry needs to start thinking outside of the box and changing ideas and thinking of ideas or ways to be capable of keeping these people working for dairies.

 

Kara:              In your role with the Alltech Dairy On-Farm Support program, you're helping farmers to embrace this change and look at the solutions to help retain these people. Can you give me an example of a farm you've worked with or experience you've had in this role to express how farmers are embracing this change?

 

Jorge:             Yeah. That's a very good question. Again, the dairy industry has grown in the amount of animals and quality of milk and so forth, but they never had a chance to take a look at how to work with human resources, so now is the time, because it's very valuable to work with human resources.

 

                        What they need to do is to create structures in the organizations about people. That's how we're going to help these guys, or where we're helping these guys. An example of what we do and how we do it is that we want to go to the farm, and we want to create a culture, build a culture based on surveys that we do on the dairies. What we do is we take a survey that is a very simple question, 17 questions, about the culture: how do they feel, if they know who the supervisor is, if they know the culture on the dairy, the team in the dairy, how they get along with the team. We gather all this information and we put a report together for the dairy farmers, so, with this information, we hit the strongest points and the weak points.

 

                        With the strong points, we're doing a good job already, but what we do is we work based on the information on the weakest points. In those weakest points, what we do is we try to build a structure of employee handbooks, job descriptions, create a culture, create anniversaries, create important dates on the dairy, so, then, people will want to stay working for these guys.

 

Kara:              So, you're not just doing an operational analysis; you're actually doing a hands-on project with the farm so that they can actually put these new implementations into place in their operation.

 

Jorge:             Correct. The information that we gather from these surveys is very valuable. They can create new conversations. They can create more feedback. They can improve based on that information, and that's where we help. Usually, what a dairy farmer is looking for is a short training for employees, but we want to offer more than that and go beyond that. We want to create a structure, organize what they want to do about their culture, and then, from that, create all the tools just to keep these guys on the farm, employees on the farm, and for the dairy farm to be successful.

 

Kara:              If a dairy manager wants to connect with you to learn more about Alltech's On-Farm Support program, what's the best way for them to do that?

 

Jorge:             We have a website. You can go to Alltech.com and, there, you can find the On-Farm website[ET1] . On the On-Farm website, you will find all the people working on the team, with a lot of the specialties about the roles, like I mentioned before, like forages, and people, so that's the way that you can find and connect with us.

 

Kara:              What advice would you give a dairy farmer that's struggling with the idea of moving in this direction and enhancing their worker relationship, their operations, on the farm? Is it worth it to their bottom line?

 

Jorge:             If you think about what happens on a dairy on a daily basis, everything is done by hand. There are a few dairies now that are moving to the robotic side of things, especially with milking cows, but if you think about delivering a calf, feeding a calf, taking care of that cow that just had a baby, feeding those cows, making sure that they're healthy, milking those cows — all those things that happen in a dairy, they are related to people.

 

                        What is happening now is a lot of people don't want to see human resources as a big investment in their industry. They need to start changing, and they need to start thinking outside the box, and they need to go back to the basics when it comes to people. It's really basic, but we haven't done it. So, what they need to do is just go back to the basics and just engage people to work with them, because everything is done by hand.

 

Kara:              Well, we thank you for your time today, Jorge. Again, this is Jorge Delgado, one of Alltech's elite dairy advisors.

 

Jorge:             Thank you so much.

 

Click here to learn more about how the Alltech On-Farm Dairy Support team can support your dairy farm needs. 

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Image Caption

Alltech's On-Farm Support Program assists farmers and helps their farms become more successful.

R.E.S.E.T-ing the dairy industry to attract and retain employees

Submitted by lkeyser on Thu, 07/18/2019 - 12:24

Dairy producers cannot control the effect of low milk prices on the dairy economy, but they can control how farm resources are utilized to make their dairies more efficient. Properly managing these resources can help reduce the struggle brought on by the current markets.

For all producers, one of the most important resources is farm labor. While it may not be easy to find people willing to work long hours — especially long hours of performing the physically demanding task of milking cows — we should make every effort to attract and retain people to work on our dairies. Although this is not an easy task, with the right conditions and the right tools, employees will see the dairy industry as a unique place that supports and cares about them.

First, dairy producers and industry supporters must change their mindset about human resources and start dedicating time and effort to this area, regardless of the size of their dairies. This does not require a big investment, but it does require time and securing the right information about how to reduce the challenges around labor and the workforce. Attracting and retaining employees is not a new problem, but the current circumstances are different than before, mainly driven by immigration challenges and competition for labor with other industries.

The ability to attract and retain employees is not complex, but to be successful, one must take into consideration and embrace the basics of working with people. The following formula is a concept that empowers a good work environment and creates good company culture:

  • R = Recruit using a structured system
  • T = Train to educate and motivate
  • R2 = Reinforce and review, investing in the future
  • B = (Offer) benefits that are inclusive and beneficial for both parties

reset formula.JPG

To create a positive culture on a dairy, the organizational basics must be in place, and there should also be a reset in the way employees are managed. R.E.S.E.T1 the business to create the right organizational structure for reducing turnover and minimizing employee management frustrations.

feeding calves BLOG.png

RULES AND REGULATIONS

The EMPLOYEE HANDBOOK is the first and most important part of any hiring process. Don’t think of this as just another piece of paper for new employees to read and sign; instead, think of the handbook as an opportunity to share some of the most important information with a new employee, including the history of the farm and the farm culture and expectations. The handbook is also a way to show new employees how the dairy cares for the individuals who are part of making an operation successful. This is an opportunity for new employees and dairies to get to know one another — and also to realize that both the dairy owner and their employees share something in common: the desire to work to support a family.

EDUCATE AND INFORM

Now that the individual has been hired and knows his or her expectations, take this opportunity to train him or her correctly, and make sure that he or she understands the protocols and procedures in place. The best way to train new employees is by explaining the “why’s” and “how’s” behind any procedure, because they value this information. Take the time to invest in training and utilize the proper communication channels, such as training videos, educational posters, internal meetings, hands-on demonstrations or external training resources from individuals with experience in teaching and motivation.

employeetrainingBLOG.png

SOCIAL AND CULTURAL ENGAGEMENT

Individuals like being part of a society that provides a culture of inclusion, and they also enjoy feeling and knowing that they are integral to that society. A culture can be defined in so many ways, and every business should define their own. Creating and maintaining a culture of respect, communication, safety and security, among other traits, should be important to each dairy in order to attract and retain employees. By not providing a clean environment for employees to eat in, for instance, or bathrooms that represent a culture of caring, the dairy may send a discouraging message to individuals looking for a place where they intend to remain employed long-term. In the same way that dairies invest in animal comfort and environment, it is also important to provide a safe, clean, inclusive and respectful environment for employees.

ECONOMIC INCENTIVES

Economic incentives are important, but they should be tailored based on clear goals and the reality of the economy of each dairy operation. Incentives, such as bonuses based on SCC, must be clear and clearly understood by employees, and every incentive should be given with meaningful intentions. Don’t just give a bonus; rather, explain the reason behind the bonus and make sure employees understand those goals. Celebrate success with them. Incentives need to be visible, accessible and achievable.

TOOLS PROVIDED

Always provide the right tools to achieve the assigned jobs. A common example of this guideline not being met is when employees are asked to perform a consistent milking routine in the parlor, although some of the milking units are not properly working — and perhaps haven’t been for some time. How can stalls be properly cleaned and groomed if barn technicians don’t have the right tools to perform this job? Always provide the necessary tools, not only for the purpose of getting the job done but also to earn respect from employees.

Finally, view your dairy as any other strategic business, for which human resources are highly important. Sell the dairy’s image to attract new employees and maintain a reliable workforce. Remember to INNOVATE, INCLUDE, INVEST and IMPLEMENT programs with employees in mind.

Click here to learn more about how the Alltech On-Farm Dairy Support team can support your dairy farm needs. 

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: "745395",
formId: "2c5ba201-30c0-4669-9dc4-c9711ca1b006"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

For all producers, one of the most important resources is farm labor. While it may not be easy to find people willing to work long hours, we should make every effort to attract and retain people to work on our dairies. 

<>Content Author

Making a difference: Alltech dairy initiative in India supports children's nutritional needs

Submitted by lkeyser on Wed, 06/26/2019 - 15:06

“If we could give every individual the right amount of nourishment and exercise, not too little and not too much, we would have the safest way to health.” – Hippocrates

India is the second-most populous country on the earth and is home to more than 400 million children, who account for 37 percent of the entire population of the world. Unfortunately, India is no exception to the global struggle to feed its younger generations a nutrient-dense diet. Around 73 percent of all Indian diets are protein-deficient, and the shortfall is even more alarming among vegetarians (IMRB survey, 2017).

The Indian Council of Medical Research (ICMR) recommends a daily intake of 200–300 grams of milk for children, and many states are still striving to achieve this goal. India is a leading producer of milk, but, in many regions, elevated agricultural performance does not necessarily equate to an improved diet.

As part of its commitment to serve people and to improve the nutritional status of children, Alltech initiated its Nutri Milk Project in November 2017, partnering with the Thribhuvandas Foundation in Anand, Gujarat, to supply milk to young students in the region.

“It is an absolute honor to be associated with Thribhuvandas Foundation in this project,” said Dr. Aman Sayed, managing director of Alltech India and regional director of Alltech South Asia. “As a nutrition company, we feel it is our responsibility to provide practical and proven solutions to enhance the nutrition level of children, who are tomorrow’s future.”

Alltech initiated the project in Gujarat, a mostly vegetarian state where milk is the main source of animal protein. Milk, a whole food that provides many essential nutrients, is a crucial part of the diet of growing children in this region. In the selected schools, 98.5 percent of school children can be categorized as undernourished on the body mass index (BMI) scale.

Five schools in the Tarapur cluster were selected for the program, as children in this region were noted to be especially malnourished. Alltech began providing 150 ml each of flavored, fortified milk every day to around 1,200 children, aged 5 to 13, as well as a weekly supplement of iron. The sole aim of this is to improve the nutritional status of these children — and, by doing so, to build a healthier India. On its journey to nourish the children of Tarapur, Alltech has delivered 1,78,754 milk pouches in the project’s first year alone.

nutrimilk2.png

Along with a 5.45-percent average improvement in the BMI of their students, the schools involved in this program have also experienced a considerable increase in attendance. These results inspired Alltech to expand the project, and in 2018, six more schools were added. Alltech plans to expand the program even further.

“Childhood is a critical time in the growth and development of a person and is a key stage in the establishment of their physical and mental abilities,” said Sayed. “We are proud to see the positive impact Alltech is having on the lives of children in the program. These children are benefiting daily from Nutri Milk, not just by improving their nutrition but by increasing their attendance and education, and this is a proud moment for Alltech.”

nutrimilk4_0.png

Alltech is committed to improving the health and performance of people, animals and plants around the world through natural nutrition and scientific innovation. At a global level, Alltech works extensively with local schools to build science labs and encourages students to pursue science with a greater curiosity about the world around them.

Every second, of every day, there are people thinking, trying, testing, flying, inspiring, and applying new ideas, with insatiable drive to guarantee a world where people, animals and plants can thrive. Together, we can build a more sustainable world. Learn more about Working Together for a Planet of PlentyTM.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Image Caption

As part of its commitment to serve people and to improve the nutritional status of children, Alltech initiated its Nutri Milk Project in November 2017, partnering with the Thribhuvandas Foundation in Anand, Gujarat, to supply milk to young students in the region.

<>Content Author

Frank Mitloehner: Cattle, climate change and the methane myth

Submitted by ldozier on Tue, 06/25/2019 - 08:03

Dr. Frank Mitloehner has done the math on the livestock industry’s contribution to climate change. He is a professor in the Department of Animal Science at the University of California, Davis, specializing in measurement and mitigation of airborne pollutants from livestock production, including greenhouse gases, VOCs, ammonia, hydrogen sulfide and particulate matter. Dr. Mitloehner joins us for a closer look at the claims against agriculture and what he says is the truth behind cattle production and climate change. 

 

The following is an edited transcript of David Butler's interview with Dr. Frank Mitloehner. Click below to hear the full audio:

David:            I'm here with Dr. Frank Mitloehner. We're going to talk a little bit about the greenhouse gas impact of cattle production — specifically, beef.

 

                        Dr. Mitloehner, this is a very big topic for you. A lot of your research has gone into this, right?

 

Frank:             Yes.

 

David:            Let’s say that you're an average person in America. You've probably heard that beef production contributes to global warming. The story is that cows produce methane, and everybody knows that's true. Methane is a very potent greenhouse gas, and everybody knows that's true. So, the natural conclusion is that cows are a big problem for climate change. It’s not quite that simple, right?

 

Frank:             That's correct. In order to really understand the topic better, I think one has to go a little bit into the chemistry of it, but just a little bit. Methane is really very different from the other greenhouse gases. The three main greenhouse gases we're dealing with are methane, CO2 and nitrous oxide.

 

                        So, how are they different? The last two — the carbon dioxide, or CO2, and the nitrous oxide — they have a very long lifespan. Once they are in the air, they stay there for hundreds, if not thousands, of years. Any kind of CO2 that you have ever put into the air by driving a car is still in the air. The only way that gas goes is upward. The more we emit, the more accumulates in the air. These gases are called stock gases because they always add up; they don't go down.

 

                        Methane is very different. It does not have a lifespan of 1,000 years; it has a lifespan of 10 years. So, after a decade, it's gone. There's a process — and that really makes methane very different from the other gases — there's a process that destroys methane, and that's called hydroxy-oxidation. What that really means is that, if you were to be the owner of a dairy or a beef operation, and let's say you've been in the business for 50 years with 1,000 animals, then, 50 years ago, your thousand animals put out methane. For the first ten years, that methane was new because you just started that business.

 

                        After that, you did not add any new methane to the atmosphere, because anything that's emitted is also being destroyed. After ten years, that gas is gone. All the emission inventories and all the media output that you hear assumes that all the methane that's generated by, let's say, cattle, adds up, but it doesn't. At the rate it's emitted, it's being destroyed. That makes methane very, very different from the other gases. This is critical to know.

 

                        What this means is, if a country like Ireland, New Zealand or the United States keeps their livestock herds steady, then they keep their methane steady. If they keep their methane steady, then they are not increasing global warming. So, do we increase global warming with our livestock herds? The answer to that is no, as long as we don't increase herd sizes.

 

David:            That makes sense. What about the rest of the world, where maybe beef and dairy production is not quite as efficient?

 

Frank:             Well, that's really where the majority of the problem resides. According to the IPCC — the Intergovernmental Panel for Climate Change — developing countries such as India emit about 70 to 80% of global greenhouse gases associated with livestock. For example, in India, there are three times more cattle than in the United States, and they don't even eat them.

 

David:            Wow.

 

Frank:             India alone has more cattle than the United States, the European Union and China combined, but they don't even eat those animals. Those bovines in India that are dairy animals produce an amount of dairy, of milk, that's nominal. It takes about 15 to 20 cows in India to produce the same amount of milk as one cow in the United States. That's why these herds are so enormous.

 

David:            What can we do to make those dairy cattle more efficient?

 

Frank:             Well, what we have to do is pretty straightforward: We have to do the same thing that we have done in countries like the United States or Denmark. For example, in the United States, we used to have 25 million dairy cows back in 1950 — 25 million dairy cows. Today, we only have 9 million dairy cows. We have shrunk the herd drastically. But with this much smaller herd today — with the 9 million — we are producing 60% more milk. That means we have shrunk the carbon footprint of the dairy industry by two-thirds in the United States between 1950 and today.

 

                        The same can be achieved around the world through the installation of a veterinary system, better feeding, better genetics, better reproduction rates. We can do this throughout the world. That doesn't mean that we're exporting the U.S. CAFO (Concentrated Animal Feeding Operation) model throughout the world, but what it does mean is that even basic vaccination and treatment against parasites, improvements in feeding and so on will have a drastic improvement effect on national production rates.

 

David:            While we're talking about different kinds of production systems, let's touch a little bit on the controversy between grain-fed and grass-fed beef and the environmental impact of those two systems.

 

Frank:             Well, what most people don't know is that, for example, here in the United States, all cattle are raised on pasture. Regardless of how they are finished, whether they are grass-finished or corn-finished, they all start out on pasture. When I say “start out,” I mean they live the majority of their lives on pasture. Those animals that are corn-finished are finished in a feedlot and fed corn for the last four months of their life. Prior to that, they were on pasture. Most people, first of all, don't know that.

 

                        Then the controversy erupts over people saying, “Well, the feedlot system must be much more environmentally detrimental.” Actually, it is more complex than that. For example, when it comes to methane, we as scientists were surprised to see that beef animals in a feedlot hardly ruminate. You hardly see any belching going on. The reason why there is no rumination, or very little, going on is because their diet doesn't lend itself to methane production. In feedlots, like it or not, the majority of feed is concentrated, meaning it is a feed base other than roughage that does not lend itself for methane production.

 

                        The methanogens — those methane-forming microbes in the rumen, in the stomach of a beef animal — those methanogens need roughage to produce methane. The more roughage or fiber in the diet, the more methane they will produce. In the feedlot, the amount of roughage in the diet is much lower than it is on grass. As a result, there's much less methane production going on. That is one of the reasons — the substrate in the feed that doesn't lend itself for methane production that is to be blamed for a lower methane output of grain- versus grass-finished animals.

 

                        But the other reason is simply the lifespan. If you have a grain-finished animal, which will go to slaughter around 14 to 16 months of age — let's call that one-and-a-half years — and then they go to slaughter. If you finish an animal on pasture, that animal will be 26 to 30 months of age, so almost twice as old as its grain-finished peer.

 

                        What does that mean? Well, that means that, if an animal lives almost twice as long, then it will have much more time to produce environmental impacts. Let's say it has more time to consume water, it has more time to excrete manure, it has more time to belch and so forth. That cumulatively leads to a situation where a grass-finished animal will have about 25 to 30% more carbon emissions associated with it than a corn-finished peer. That is taking into consideration the fact that a corn-finished animal, of course, eats corn, and that corn was produced someplace and also had environmental impacts. But, all of that taken into consideration, using the life cycle assessment approach, will lead to the result that the corn-finished animal will not have a higher but a lower overall environmental impact.

 

David:            Wow, that's interesting. The deeper that you dive into this topic, the more things, like that, you find out were just more complicated than you would expect based on what you've seen on social media. One of those messages that I can think of that's repeated over and over is that we're using land to feed animals, and we should be using that same land to feed humans; that would be more efficient. But that's another one of those areas that's a little more complicated than that, right?

 

Frank:             Absolutely. This is another issue that people are really confused about. Just imagine all agricultural land in the world. Let's look at what this agricultural land looks like. About two-thirds of all agricultural land in the world is called “marginal land.” Marginal means that either the soil quality is not good enough or there's not enough water to grow crops.

 

                        What do we do with that land? We use it for livestock. To be precise, we use it for ruminant livestock because ruminants are able — like sheep and goats — to use non-human-edible feedstuff, such as grasses and certain legumes, and convert those cellulose-containing feedstuffs into animal source foods, such as meat and milk and so on. Ruminant animals are the ones making use of two-thirds of all agricultural land. Why? Because we cannot use that land for any other purpose, period.

 

                        The remainder — one-third of all agricultural land — is what we refer to as “arable land.” That's the land where you can grow crops — crops for animals and for people. Now, the criticism sometimes is, “Well, why do we use any of that arable land for feed production for animals?” Well, the simple answer is because people like animal-source foods, and animal-source foods are highly nutritious, are very nutrient-dense, and people simply demand it. It’s not an “ivory tower” discussion of, “What's the most efficient use of land, and should only the most efficient food items to grow there?” That's not how humans operate.

 

                        I can tell you, there are different things, for example, that we can drink. We can drink water, but we can also drink wine, or we can drink tea, or we can drink coffee. But there's no reason we drink tea or coffee other than that we like it. There's no nutritional reason behind it. It takes 700 liters [of water] to produce one liter of wine. Isn't that wasteful?

 

David:            Sure.

 

Frank:             I could just as well say, “Let's quench our thirst with water and save a heck of a lot of water to produce wine or coffee or tea.” But guess what? We humans are not just rational and “ivory tower” type of people. We say, “What's the most efficient way of producing what we eat or drink?” But we also do it because of cultural reasons or simply because of pleasure reasons. There's not a reason why you and I would eat chocolate ever other than because we like it.

 

David:            Yeah, that's a very good point. Certainly, when you have a huge problem like climate change — which is a crisis that's already here — and people are discussing how to deal with it, I think there is a lot of wasted time talking about the silver-bullet solution when we need lots of solutions, and we need to make sure that the things that we are doing are things that will work. But ideas like just telling everybody they shouldn't eat meat — that's not very practical. I don't think that it will happen. As you mentioned, you could do the same thing with tea and coffee and wine. It's really no different than saying, “Okay, we just need to have half as many people on the planet.” Just pushing that message is not going to make that happen.

 

                        So, since people that don't want us to engage in animal agriculture have done a fantastic job at spreading the message that meat and dairy are largely responsible for global warming, what can we do to get the message out there that that's not the case, it's more complicated than that, and that we really need to look at the data?

 

Frank:             So that your listeners really get a feel for how significant this issue is — or how insignificant it is, I should say — the EPA (Environmental Protection Agency) of the United States looks at all sources of greenhouse gases. According to the EPA, all those sources consuming fossil fuels — such as transportation, power production and use, the cement industry and so on — combined are responsible for 80% of all greenhouse gases in this country. All of livestock and feed production in the United States combined are responsible for 3.9%.

 

                        One of the big issues is that people in animal agriculture try to appease that 1 or 2% of the fringe that make all this noise, and they completely forget the 98% that actually like animal-source foods and that have high confidence in that food being produced in a humane and a responsible fashion. We need to stop doing that; we will never appease the fringe. You will never appease those people shouting for meat tax and propositions and so forth. We need to make sure that we open up to a public that, increasingly often now, wants to know where their food comes from and that we open ourselves up and talk to them about how it's produced and why.

 

                        That has not happened in the past. That is a big black eye animal agriculture has, and rightfully so, because you cannot sell something that people have an emotional relationship with, which is food. When people ask, "How is this food produced?" you cannot say, "No comment." There's no reason for us to say that, but there's every reason in the world to explain why we do what we do, because we do it exceptionally well.

 

                        Now, you just mentioned the comparison of food versus other activities. I'll just give you one example so that your listeners understand how overblown a lot of the frenzy is that they're listening to right now. Assuming that you were an omnivore right now, let's assume you were to go vegan for the next year, not eat any animal-based foods. Then that would save 0.8 tons of greenhouse gases — 0.8 tons. If you were to fly from here from the United States to Europe and back, per passenger, that equates to 1.6 tons. So, to change your diet from omnivore to vegan for one year is half the impact as one transatlantic flight. That tells you what you should think about the hype that's coming your way as a citizen by those people who tried to work through the anti-animal agriculture agenda.

 

David:            Wow, that's amazing. When you watch some of the documentaries on this topic, the message is very much that the only thing that you can do that will make an impact is to stop eating meat and dairy. When you look at the data, that's just not really the case.

 

Frank:             Well, the same people who are saying that today said ten years ago that we should stop eating meat because of ethical reasons, because they don't agree that animals should be in bonds, and then they looked at other means to get people to stop eating meat and consume dairy and eggs. None of that stuck — but the carbon footprint discussion does stick. Many people in animal agriculture just haven't really spent enough attention on that very topic, and now they see, this is more serious than we originally thought. It is high time now to really take this seriously, to take consumers' perceptions around this seriously, and to make sure that producers understand that, in order to keep their social license to produce animal-source foods, they need to engage in this topic. They have a great story to tell, but they need to start telling it.

 

David:            I have to confess that, even though I work in agriculture, I'm very concerned about climate change. I'm our sustainability manager here at Alltech. For a long time, I thought this was a valid message, that meat and dairy were worse for climate change than other foods. So, I felt a little guilty every time I ate meat or dairy. I didn't think about it every day, but I thought it was a legitimate thing. So, I was very happy, as I was researching you and preparing for this podcast and learning more about the topics that you talk about — I was excited to find that it was a more complicated story than that. I think it's just very important that we get that message out there to people. So, where can people find out more about what you've written and maybe find you on social media?

 

 

Frank:             About a year ago, I started on social media. Before then, I thought it was silly, but now I know I was silly thinking that. I'm on Twitter. My Twitter handle is GHG — that stands for greenhouse gas — @GHGGuru. That's where you find me for sure. If you are interested in publications that I've published, you will find me on ResearchGate. All you need to do is put in my name, Frank Mitloehner, and you will find the publications that I'm putting out — not all of them in peer-reviewed scientific papers, some of them in other outlets, such as The Conversation or Medium. These are web-based platforms. But the reason why I go onto these platforms, too, is because you reach a lot of listeners or readers that way. In general, when you Google my name or names of people you're interested in, you'll find everything now on the internet.

 

David:            All right. Well, thank you very much, Dr. Mitloehner. It was fantastic talking to you.

 

Frank:             Well, thanks for having me.

 

David:            A pleasure.

 

 

 

Agriculture has the power to solve some of our most challenging environmental problems. We can put carbon back in the soil and forests. We can recycle nutrients and keep them out of our rivers, lakes and oceans. We can generate renewable energy. And, together, we can build a more sustainable world. Learn more about Working Together for a Planet of PlentyTM.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Image Caption

Is cattle production to blame for climate change? According to Dr. Frank Mitloehner, the truth is in the numbers. 

<>Content Author

Dr. Kyle McKinney: The enzyme opportunity

Submitted by ldozier on Mon, 06/17/2019 - 21:51

The following is an edited transcript of Tom Martin's interview with Dr. Kyle McKinney. Click below to hear the full interview. 

Tom:              The food industry has a four-quadrillion-dollar problem. You heard that right. This number represents the losses due to unused or misused nutrients in animals. With hundreds of thousands of acres being dedicated to farmland each year, agriculture is an important force that is continually shaping our world. But could a new enzyme begin to unlock this four-quadrillion-dollar opportunity? Is this the real key to creating a Planet of Plenty™?

 

                       As the global director of Alltech's Alternative Raw Materials and Feed Efficiency platform, Dr. Kyle McKinney is focused on feed efficiency. He earned a Ph.D. in agricultural biotechnology, focusing on the development of microbial fermentation systems to produce complex enzymes that improve feed and nutrition. Dr. McKinney joins us to talk about new opportunities for food and our future. Thanks for joining us, Kyle.

 

Kyle:              Thank you very much.

 

Tom:             Before we talk about the future, where are we today? Where is the state-of-the-art in feed efficiency right now?

 

Kyle:              When we talk about this opportunity, we consider the future of food and feeding the population. This whole concept and idea comes from the fact that, over the next 20 to 30 years, we're going to add two to three billion more people to the population. People say, during that timeframe over the next 30 years, we will have to produce more food in 30 years than we produced in the history of mankind.

 

                       When we read about the future of food, we see the positives and we see the challenges, the opportunities and some downright scary aspects, such as not having enough calories — not having enough food. So, we look at this as an opportunity — an opportunity to utilize technology, specifically an enzyme, to help the animal digest more available nutrients from our fields. I don't look at the doom and gloom. I believe that we will have plenty of food, and I believe that, when we look at our feedstuffs and you look at how much we lose in terms of nutrients and calories now when we're feeding our animals, it's an enormous opportunity — a four-quadrillion-dollar opportunity.

 

Tom:             We're tossing around some enormous numbers here. I mentioned that number: quadrillion. For perspective's sake, that's 1,000-trillion dollars. If you place one quadrillion British pound coins on top of each other, they reach beyond our solar system. That's how much we're talking about. We're talking about four quadrillion dollars in losses due to unused or misused feed in animals. So, the scope and the proportion of this is beyond imagination. When we hear about unused or misused feed, what does that mean, and how does this happen?

 

Kyle:               If you put some context behind that number, we produce about 3 billion tons of grains per year. Much of that goes into feedstuffs to feed our animals. The problem is that we lose about 25 percent, on average, of the available nutrients because of fibrous components in the feeds. I use the terminology of a bird nest that traps nutrients and the animal can't digest.

 

                        So, when we look at and consider 3 billion tons of feed, of grain, and we consider the 25-percent losses, and you look at the calorie levels of all those grains, that's really where we get to in terms of this four quadrillion, which is an enormous number to even consider.

 

Tom:              It is, it is. We hear that there's a new enzyme that could transform this problem into something of an opportunity. What is the new enzyme and how was it identified?

 

Kyle:               Our focus has always been on getting the most out of our diets. To do that, you have to consider that there are lots of components in a diet that trap nutrients — lots of variations of fiber, if we want to go that simple. To break all those fibrous components down, we believe it takes many enzymes.

 

                        We focused on a technology called solid state fermentation. Solid state fermentation is an ancient technology. What we are able to do is utilize a non-GMO organism, a fungus. We grow that fungus on a high-fiber feedstuff, and it produces a whole host of natural enzymes that are designed to break down grains and feedstuffs because we start with that.

 

                        So, our approach is utilizing solid state fermentation to produce an enzyme complex, many enzymes, to work on the many fiber substrates that we have in a diet. We don't focus on just one or two. We're focusing on a dozen or more of these substrates that are trapping nutrients. We can break those down. We see the most benefit in terms of nutrient availability for the animal.

 

Tom:              And is this technology being applied?

 

Kyle:               This technology is being applied. We've been pioneers in this solid state fermentation system. We have a facility in Serdan, Mexico, that produces for Alltech globally. We do research in terms of looking at how we can improve that system. We do research looking at new microorganisms that may give us even better enzyme complexes to focus on and get more and more out of the diet. That's the challenge the industry has, and that's the challenge we pose for ourselves: how do we continue improving the efficiency of those diets? Which means, as we feed more animals to feed the growing public, we've got more grain sources, because we're getting more efficient. That's one way we're approaching this Planet of PlentyTM concept, using this solid state fermentation enzyme technology.

 

Tom:              And in this application, you're actually seeing those results.

 

Kyle:               Absolutely. We see it with our enzyme system. For example, we can improve the digestibility of this grain feedstuff 7 to 8 percent. So, if you take 7 to 8 percent of the amount of calories that we're losing in all of our grains in feedstuff, it's an enormous number. It's going to allow us to feed more animals in the future.

 

Tom:              I know that you spent some time working for Alltech in Costa Rica on a project focused on using the Alltech Crop Science portfolio to control disease and reduce chemical applications. It also allows your team to set up a fermentation lab to evaluate more sustainable microbial solutions for disease control. How has the knowledge gained from that work informed what you're doing now?

 

Kyle:               The tie between those two projects is simply our expertise in fermentation, in microbial fermentation. We learned a lot about producing microorganisms in our systems in Costa Rica that we were able to take to our facilities in Kentucky and our facilities in Mexico and others and be more efficient in how we produce our products. So, the tie there was simply the fact that we went to Costa Rica, we set up a fermentation system, we're very successful in utilizing this type of technology to reduce chemical input. What we gained is knowledge of how to become more efficient in our production models that allowed us to move to different locations that we have production locations in globally.

 

Tom:              Earlier, you referenced population growth in the world. I'm wondering how this new enzyme will factor in supporting a Planet of Plenty.

 

Kyle:               If you look at the numbers, in 2050, there's an expectation that we will require 70 percent more meat, more food — and that's something around 500 million tons more meat in 2050 than we're producing today. That's something around 1 billion more tons of milk than we're producing today.

 

                        In the last 60 years, we haven't had additional acres of land growing grains, so we've accomplished amazing feats in agriculture; with less land, we produced more meat. Moving into the next 30 years, who knows how much more additional land we'll free up for grain production to produce more protein? This SSF enzyme technology and enzyme complex is going to be critical for the simple fact that we don't know that we'll have more acres of land. We probably will find it somewhere. But we've got to get more efficient because we do know one thing: we're going to have to produce more meat and protein to feed the population.

 

Tom:              Kyle, what else are you keeping an eye on in terms of alternative raw materials? In a traditional industry like farming, why is it important to look for new ways of doing things?

 

Kyle:               The hot topics in alternative materials right now are insect proteins. In Kentucky, it's hemp. [Kentucky is] the number one hemp-producing state in the United States. How is that going to play into how we're feeding animals in the future is a key question, and it's our duty to keep an eye on and understand how some of these alternative materials will play a role as we feed animals. At the moment, we're still very traditional corn and soy. But the new technologies, specifically in terms of insect protein and insect meals, are going to be probably the fastest-growing segment in the next five to ten years.

 

 

Tom:              That's fascinating. I've been wondering if Alltech had an interest in hemp because it's so popular in Kentucky (where Alltech is headquartered) and it grows all over the state. Is there actual activity in this area?

 

Kyle:               Our activity began with Alltech Crop Science looking at some of our technologies for improving efficiency. That is a project that's ongoing. But in terms of animal feed and animal nutrition, our researchers are digging into how hemp will play a role. Right now, it's not going into diets, but we have to keep an eye on this and see how that changes and see how it fits into feeding strategies.

 

Tom:              Getting back to insects — also fascinating, and there certainly are plenty of them. But are there particular species that are of interest?

 

Kyle:               The number-one insect used right now is called the black soldier fly. Picking the right insect is all in determining the growth rate of the insect — how much protein is in that fly meal. So, black soldier fly is the number-one insect producer at the moment.

 

Tom:              What would you say are the trends that you're keeping your eye on right now?

 

Kyle:               I think the trends that we're looking at in Alltech really revolve around technology and agriculture. How are we getting more efficient in monitoring animals, feeding animals, observing the nutritional needs of the animals, and what new technologies are going to allow us to do that? So, I think we, internally, have some programs where we're looking at innovation for sensors, for example. But it all gets back to us focusing on how we are improving the nutritional component of that animal and improving profits for our farmers and our growers.

 

Tom:              Dr. Kyle McKinney, Alltech's Alternative Raw Materials and Feed Efficiency platform global director. Thank you so much for joining us.

 

Kyle:               Thank you.

 

 

Dr. Kyle McKinney spoke at ONE: The Alltech Ideas Conference (ONE). Click here to learn about ONE and how you can access innovation on demand. 

 

Click here for more information about the Alltech Enzyme Management Program.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Products
Subscribe to Dairy Cow
Loading...