Feed Strategy: Alltech: Global feed production down 1.07% in 2019
Alltech Global Feed Survey webinar addresses 6 trends that should be on the radar of all animal feed industry members as they will impact the global estimate for total feed tonnage.
North America
Europe
Latin America
Asia Pacific
Africa
Middle East
Alltech Global Feed Survey webinar addresses 6 trends that should be on the radar of all animal feed industry members as they will impact the global estimate for total feed tonnage.
The 2020 Alltech Global Feed Survey* estimates that international feed tonnage in 2019 decreased by 1.07% to 1.126 billion tonnes, due largely to African swine fever (ASF) and its negative effects on pig feed output in the Asia-Pacific region and China. However, healthy growth was seen to come from the layer, broiler, aqua and pet food sectors.
Alltech has released the results of its 2020 Alltech Global Feed Survey, which found that international feed tonnage decreased by 1.07% to 1.26 billion metric tons of feed produced last year, according to a release from the company. It asserts that this was due largely to African swine fever (ASF) and the decline of pig feed in the Asia-Pacific region. It is the first time in the nine years that the company has conducted the survey that there has been a decline.
African swine fever has taken its toll on international feed production. According to the 2020 Alltech Global Feed Survey estimates, global pig feed tonnage was down 11% in 2019. The primary producing region for pig feed remains Asia-Pacific, but that region also exhibited the largest decline at 26%, with China (-35%), Cambodia (-22%), Vietnam (-21%) and Thailand (-16%) experiencing large decreases.
The 2020 Alltech Global Feed Survey estimates that international feed tonnage decreased by 1.07% to 1.126 billion metric tons of feed produced last year, due largely to African swine fever (ASF) and the decline of pig feed in the Asia-Pacific region. The top nine feed-producing countries are the U.S., China, Brazil, Russia, India, Mexico, Spain, Japan and Germany. Together, these countries produce 58% of the world’s feed production and contain 57% of the world’s feed mills, and they can be viewed as an indicator of overall trends in agriculture.
Dr. Mark Lyons, president and CEO of Alltech, shared the survey results via public livestream from Alltech’s global headquarters in Nicholasville, Kentucky.
“2019 presented extreme challenges to the feed industry, with one of the most significant being African swine fever. The regional and global implications are reflected by the Alltech Global Feed Survey and the decline in global feed production, said Lyons. “While pig feed production is down in affected countries, we are noting increased production both in other species as producers work to supplement the protein demand, and in non-affected countries as exports ramp up. The damage caused by ASF will have long-term implications, and we expect that the top protein sources will continue to shift as our industry adapts to the shortage.”
The global data, collected from 145 countries and nearly 30,000 feed mills, indicates feed production by species as: broilers 28%; pigs 24%; layers 14%; dairy 12%; beef 10%; other species 6%; aquaculture 4%; and pets 2%. Predominant growth came from the layer, broiler, aqua and pet feed sectors.
Regional results from the 2020 Alltech Global Feed Survey
Notable species results from the 2020 Alltech Global Feed Survey
During the live presentation, Dr. Lyons was joined by a panel of industry experts, including Jack Bobo, CEO, Futurity, USA; Matthew Smith, vice president, Alltech, U.K.; Bianca Martins, general manager, Alltech, Mexico; and Brian Lawless, North America species manager, Alltech, USA. The group discussed the trends behind the data and the implications for the global market. Topics ranged from consumer demands to the adoption of new technology.
To access insights from the 2020 Alltech Global Feed Survey, including a recording of the panel discussion, an interactive map and presentation slides, visit alltechfeedsurvey.com.
The Alltech Global Feed Survey assesses compound feed production and prices through information collected by Alltech’s global sales team and in partnership with local feed associations in the last quarter of 2019. It is an estimate serving as a resource for policymakers, decision-makers and industry stakeholders.
The 2020 Alltech Global Feed Survey estimates world feed production has declined by 1.07% to 1.126 billion metric tons, with the top nine countries producing 58% of the world’s feed production.
Nesta temporada de 2019/2020, o Brasil deve tornar-se o maior produtor de soja do mundo, ultrapassando os EUA, de acordo com relatório da Rede Global de Informações Agrícolas dos Estados Unidos (USDA). O relatório ainda prevê que na área plantada estimada em 36,8 milhões de hectares, o país produzirá 123,5 milhões de toneladas da commodity.
Porém, junto aos avanços tecnológicos que permitem aos produtores alcançar verdadeiros recordes de produção, também é crescente a busca por soluções que consigam o bom desempenho frente às adversidades, como ataques de insetos e doenças que possam vir a ocorrer em lavouras comerciais.
Uma das grandes ameaças para os produtores de soja tem sido a ferrugem asiática, doença causada pelo fungo Phakospora pachyrhizi. O problema provoca manchas escuras nas folhas, que vão aumentando até causar desfolha e tem fácil disseminação pelo vento.
Sim, no mercado já existem cultivares resistentes, mas a grande utilização destas tecnologias têm aumentado a resistência do fungo, gerando preocupação aos produtores. Mas eles não precisam se desesperar: frente a esse cenário se faz necessário então o emprego de outros manejos para evitar o ataque da doença, que pode provocar perdas de até 90% da produção.
Nesse caso, é comum entrar em cena osfungicidas, que são bem eficazes contra avanços do patógeno. Porém, seu uso pode trazer impactos tanto na planta quanto no solo. Mas nem tudo está perdido: a associação destes produtos com tecnologias de nutrição foliar auxiliam na melhora do sistema natural de defesa da planta e, ao mesmo tempo, mantêm a planta equilibrada nutricionalmente, tornando-a mais capaz de superar adversidades.
Estudo realizado na fazenda da Universidade Estadual de Londrina (PR) revelou que a associação de fungicidas com o fertilizante Agro-Mos da Alltech Crop Science pode reduzir em 77% a severidade de ferrugem asiática na soja; e originar um consequente aumento de 17 sc/ha na produtividade em relação à testemunha.
Este produto, com tecnologia da Alltech Crop Science, é rico em aminoácidos e elementos nutricitores que fortalecem naturalmente as defesas da planta. O resultado acima apresentado mostra como o manejo integrado de tecnologias pode provocar ganhos em qualidade e rentabilidade na lavoura.
Foto: Vinícius Abe (Gerente Técnico Alltech Crop Science)
Given that consumers get a steady diet of stories about the problems facing agriculture, a positive message appears to be welcome, said Alltech president Mark Lyons. “Agriculture has the greatest potential today to shape the future of our planet,” he said at an Alltech breakfast organized during the Banff Pork Seminar. The challenge is to produce enough food for a growing population while caring for food animals and protecting the environment.
Avec des changements minimes dans vos pratiques quotidiennes, de grandes améliorations de qualité peuvent être obtenues. Voici quelques conseils clés pour faire la différence en 2020.
1) Choisir la bonne date de fauche : elle doit être choisie de sorte que l’herbe contienne peu de tiges et beaucoup de feuilles. Il est utile de vérifier tôt et régulièrement la maturité de l’herbe pour faucher au meilleur moment !
2) De bonnes pratiques de fauche pour assurer la qualité. La hauteur de coupe (>7cm) est essentielle pour éviter la contamination par le sol, mais aussi pour assurer une repousse rapide de l’herbe pour la prochaine coupe ou pour le pâturage. Une fois que l’herbe est fauchée, les nutriments disparaissent. Ainsi préférez des andains larges car plus le séchage est rapide, moins la perte est importante.
3) Viser le taux de matière sèche idéal. Il est idéal entre 25 et 30%. Trop humide et il y aura de grandes pertes par fermentation, trop sec et ce sont de grandes pertes au champ et une moindre stabilité aérobie. Ces pertes réduisent la quantité d’ensilage, mais plus important encore, elles réduisent la digestibilité et donc les nutriments disponibles pour la production. Un pré-fanage trop long peut réduire la digestibilité de l’ensilage de plus de 5%.
4) Un tassage optimal : Pendant le remplissage du silo, assurez-vous que les couches soient régulières, bien compactes et épaisses de 15 cm, puis consolidez le silo lorsqu’il est rempli. L’idéal est de fonctionner en binôme : une personne qui répartit la couche, et une 2e personne qui tasse avec un tracteur.
5) Une bonne conservation pour limiter les pertes : assurer une excellente étanchéité, avec des films latéraux et supérieurs bien étanches. Lester avec des sacs de sables est essentiel pour assurer une pression suffisante sur les bords du silo ainsi que dans le sens de la largeur (tous les 3 mètres). Tous ces aspects sont importants pour une bonne conservation de la valeur nutritive et limiter les pertes en matière sèche. Enfin l’utilisation de stabilisateurs d’ensilage se révèle pertinente et rentable dans la plupart des cas.
We are inspired by the great challenge the world has presented us — to produce enough safe, nutritious food for all, while caring for our animals, and sustaining our land, air and water for future generations. Our natural resources may be finite, but human ingenuity is infinite.
Planet of Plenty is a mission to:
What started as one company’s vision has become a call for collaboration.
Planet of Plenty is a vision of promise, possibility and positivity for the future. It is our belief that a world of abundance is achievable, but it will take all of us working together.
It’s a vision that must be led by science, technology and a shared will to make a difference — to plant trees we’ll never see grow.
Sustainability means taking positive action today for the success of tomorrow. It’s a pursuit where there’s always room for improvement … and a new idea.
En los últimos 20 años, el uso de enzimas exógenas en el sector de nutrición animal ha experimentado un crecimiento y desarrollo dramático. La mayoría de la producción de enzimas para la alimentación animal se origina utilizando microorganismos bacterianos y fúngicos producidos por procesos de fermentación sumergida (SmF por sus siglas en inglés) o fermentación en estado sólido (SSF por sus siglas en inglés).
Por otra parte, las cepas microbianas de origen natural para la producción de enzimas son de gran valor y continúan utilizándose, pero el uso de versiones recombinantes representa la mayor parte de la producción industrial de enzimas en la actualidad.
La producción industrial de enzimas, ya sea por fermentación líquida sumergida o fermentación en estado sólido, tiene el objetivo de mantener o aumentar los rendimientos de los productos, mantener una calidad constante y reducir el costo de fabricación. Estos objetivos a menudo se cumplen a través de la optimización del proceso dirigida a reducir o minimizar los cambios de condición durante la fermentación, reduciendo el estrés microbiano durante la fermentación y mejorando la actividad metabólica microbiana. Es imperativo que exista un programa para cada tipo de plataforma de fermentación, instalación y producto, a fin de minimizar los factores que podrían influir negativamente en el rendimiento.
Optimización del proceso de fermentación
El desarrollo y la optimización del proceso de fermentación son imprescindibles para lograr una fermentación exitosa. Las fermentaciones a menudo se miden por la tasa de síntesis de enzimas (es decir, la tasa de producción de enzimas y la concentración celular). La mayoría de las fermentaciones de procesos industriales tienen lugar a gran escala en volumen y un pequeño cambio en la productividad puede generar un gran impacto económico.
Para lograr el resultado de fermentación deseado, generalmente se miden y mantienen una serie de parámetros de control. Las mediciones más comunes incluyen pH, temperatura, biomasa, viabilidad celular, concentraciones de sustrato, oxígeno disuelto, metabolitos y productos, y la composición de los gases de escape. Si bien muchos controles y mediciones diferentes son parte del proceso de análisis de la fermentación, la temperatura, el pH y el oxígeno disuelto son los indicadores más comunes de que la fermentación está progresando bien.
La fermentación en estado sólido generalmente comparte parámetros y medidas únicas de control similares a las fermentaciones sumergidas. Los factores de optimización para SSF incluyen la selección del sustrato sólido, el contenido de humedad del sustrato, la temperatura, el pH inicial, el tiempo de incubación, el nivel de inóculo y la adición de nutrientes en forma de nitrógeno o carbono.
La fermentación en estado sólido es un modelo probado para la producción comercial de metabolitos secundarios para su uso en muchas aplicaciones industriales. Aunque la tecnología SSF comenzó con la fermentación de alimentos hace miles de años, los avances recientes en tecnología e ingeniería han llevado a una amplia gama de aplicaciones modernas, incluyendo la producción de enzimas para la alimentación animal. El potencial de la tecnología SSF para la producción comercial de enzimas ha sido ampliamente investigado en los últimos 20 años. Los sistemas de fermentación en estado sólido se pueden adaptar para abordar necesidades específicas basadas en la selección de sustratos y microbios. Por ejemplo, Aspergillus niger produce un cóctel de enzimas que contienen fitasa, xilanasa, celulasa, proteasa y β-glucanasa. Estas enzimas, tanto para aplicaciones individuales o en un complejo de enzimas, tienen un amplio espectro de aplicaciones industriales.
La innovación en ingeniería para permitir procesos SSF a gran escala ofrece una gran oportunidad de crecimiento en la industria comercial de enzimas.
Shrimp diseases are the shrimp farming industry’s biggest concern. In Asia, diseases cost the shrimp industry billions of dollars annually (Shinn, et al., 2018). There are numerous diseases that cause this economic loss. This article will provide guidance to help you prevent shrimp diseases by going back to basics with farm management practices, biosecurity and shrimp health management.
No single disease can be definitively named the most severe, as this depends on the area, the timing of the outbreak and the season. Some of the most common shrimp diseases found in Asia are acute hepatopancreatic necrosis disease (AHPND), which is caused by bacteria; white-spot syndrome virus (WSSV), which is caused by virus; and Enterocytozoon hepatopenaei (EHP), the fungal microsporidian. The table below summarizes the symptoms of and prevention methods for each of these diseases.
Disease |
Type |
Symptoms |
Prevention |
Acute hepatopancreatic necrosis disease (AHPND) AHPND mainly infects giant tiger prawn (Penaeus monodon) and whiteleg shrimp (Penaeus vannamei). Asian countries that have reported cases of AHPND include China, Vietnam, Malaysia, Thailand and the Philippines. |
Bacterial infection with strains of Vibrio parahaem-olyticus. |
Sudden, mass mortalities (up to 100%), usually within 30–35 days of stocking grow-out ponds (FAO, 2013; Hong et al., 2016; NACA, 2012). AHPND targets gut-associated shrimp tissues and organs.
|
Environmental factors: Overfeeding, poor seed quality, poor water quality, poor feed quality, algal blooms or crashes (FAO, 2013; NACA, 2012). Practices: Improvement of hatchery sanitary conditions and PL screening; good broodstock management; use of high-quality post-larvae; strict feeding rate control; and appropriate stocking density (OIE, 2019). |
White spot syndrome virus (WSSV) First detected in Taiwan in 1992, WSSV then spread to almost all Asian countries (Sanchéz-Paz, 2010). |
Virus |
Rapid reduction in food consumption; lethargy; high mortality (up to 100%) within 3–10 days of the onset of clinical signs; loose cuticle with white spots, most apparent on the inside surface of the carapace; in many cases, moribund shrimp display a pink to reddish-brown coloration due to the expansion of cuticular chromatophores and few, if any, white spots (FAO, 2012). |
Screening of broodstock, nauplii, PL and grow-out stages; avoiding rapid changes in water conditions; avoiding shrimp stress; avoiding the use of fresh feeds, particularly crustacean; minimizing water exchange to prevent virus carriers from entering the pond; treating infected ponds or hatcheries with 30 ppm chlorine to kill infected shrimp and carriers; and disinfecting associated equipment (FAO, 2012). |
Enterocytozoon hepatopenaei (EHP) EHP is now endemic throughout China, Malaysia, Thailand, Indonesia and Vietnam, and is likely present in India. |
Microspori-dian parasite |
EHP does not cause mortality, but it does heavily limit growth. This pathogen can be detected by using gene-based tools, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification testing of feces from broodstock (Newman, 2015). |
Biosecurity in the hatchery (no live feed, disinfection, clean eggs); proper pond preparation (physically remove accumulated organic matter and treat pond bottoms); and proper pond management during the growth cycle (Newman, 2015). |
Disease can be brought on-farm by water quality, wildlife, equipment, people, stock and feces. They can manifest as external parasites, viral infections, bacterial infections or fungal infections. Therefore, the most practical way to prevent disease and/or reduce the losses they lead to is to implement proper farm management practices and enhance the immune system of the shrimp.
The production cycle of shrimp farming consists of four components: broodstock, hatchery, nursery and grow-out. According to the Food and Agriculture Organization of the United Nations (FAO), each of these components would require clean water, clean rearing facilities, clean feed, hygienic protocols, and dry-out and break-cycle practice.
Shrimp disease treatment is not easy; often, it is more complex than disease prevention. There is not one single solution that fixes all problems, but there are preventive measures that keep pathogens from filtering through shrimp ponds and that keep shrimp healthy. FAO recommends the following best practices in shrimp culture:
It is natural for pathogens and bacteria to be present in shrimp ponds. They might not even lead to any diseases for healthy shrimp with strong immune systems. Therefore, it is important to take good care of shrimp gut health and work to bolster their immune systems. This can be achieved by using the right feed additives.
One example is supplementation with zinc and selenium. Zinc plays a key role in modulating immune function, resulting in shrimp with increased immune capabilities. Zinc also helps maintain skin integrity and speeds up wound-healing. In addition to zinc, selenium supplementation has been proven to promote shrimp growth and immune health.
An Alltech solution that has been effective in field trials in Southeast Asia is Aquate™ Defender.
What is Aquate Defender? It is a blend of organic trace minerals (zinc and selenium) and Saccharomyces cerevisiae yeast extract. This product has been shown to help improve performance and bolster the immune system, ultimately increasing the profitability of the farm.
Aquate Defender is the solution platform for aquaculture that provides a combination of technologies based on proprietary processes. Aquate Defender technologies help maintain a protective balance between your aquaculture species, their nutrition and the environment in which they live. This optimizes animal performance and helps maintain healthy populations.
Researchers at Alltech have developed the Aquate Defender range of nutritional solutions in partnership with our global customer base, using our three core technologies: peptide technologies, solid-state fermentation (SSF) and yeast fermentation. Aquate Defender is specifically designed to address producers’ concerns about the gastrointestinal stability of their animals. Aquate Defender solutions help producers as they work to achieve their animals' true potential and enhance their profitability.
Aquate Defender can improve the gut microvilli length, thus improving overall nutrient absorption, which can translate to growth performance (see Figure 1 below).
Figure 1: Shrimp gut morphology after feeding Aquate Component for 56 days
Intestinal morphology |
Control |
MOS 1.0 |
MOS 2.0 |
MOS 4.0 |
Microvilli length, um |
0.92 + 0.03a |
1.10 + 0.07ab |
2.39 + 0.14e |
2.15 + 0.09d |
Source: Zhang et al., 2012
The results of a commercial trial at a Malaysia shrimp farm studying the whole production cycle showed that Aquate Defender helped improve overall profitability. The average bodyweight of the harvested shrimp increased 0.77 g, and FCR was reduced by 0.24. Overall, the yield per hectare increased 1.96 tons per hectare, and the return on investment (ROI) for the application of Aquate Defender was 7 to 1, compared to the control.
Figure 2: Results of a commercial trial of white shrimp showing improved performance with Aquate Defender
Alltech vs. control |
|
Mean body weight (MBW) |
+0.77 g |
Average length |
+1.23 cm |
Production per pond |
+979 kg |
FCR |
-0.24 |
Production per hectare |
+1,960 kg |
ROI |
7.1:1 |
By improving food absoption and gut health, Aquate Defender increased bodyweight and production.
Source: A large farm in Malaysia (Sept. 2012)
Research and local field trials conducted in Malaysia and Indonesia have proven that, when Aquate Defender is used, the shrimp gut is heathier, with a longer and better villi structure that leads to better absorption. Farmers using Aquate Defender in their nutrition programs are experiencing more successful rates of shrimp culture. In several Asian countries, customers who have previously used Aquate Defender continue to use this product in their feeding programs.
Although shrimp disease is the main challenge in shrimp culture, it can be prevented and overcome with good farm management practices and a strong biosecurity system. As an animal health and feed additives company, Alltech and its solutions can support you by improving the immune health of your shrimp and increasing both your productivity per hectare and, ultimately, your profitability.
References
A.P. Shinn, J. Pratoomyot, D. Griffiths, T.Q. Trong, N.T. Vu, P. Jiravanichpaisal and M. Briggs (2018). Asian Shrimp Production and the Economic Costs of Disease. Asian Fisheries Science, 31S (2018): 29-58.
FAO (2012). Species Fact Sheets: Penaeus monodon (Fabricius, 1798). In: FAO Fisheries and Aquaculture Department. http://www.fao.org/fishery/species/3405/en
FAO (2013). Report of the FAO/MARD Technical Workshop on Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Syndrome (AHPNS) of Cultured Shrimp (under TCP/VIE/3304), 2013. Hanoi, Vietnam, 25–27 June 2013. FAO Fisheries and Aquaculture Report No. 1053, Rome, Italy, 54 p.
HONG X.P., XU D., ZHUO Y., LIU H.Q. & LU L.Q. (2016). Identification and pathogenicity of Vibrio parahaemolyticus isolates and immune responses of Penaeus (Litopaneus) vannamei (Boone). J. Fish Dis., 39, 1085–1097.
NACA (2012). Report of the Asia-Pacific emergency regional consultation on the emerging shrimp disease: Early mortality syndrome (EMS)/acute hepatopancreatic necrosis syndrome (AHPNS), 9–10 August 2012. Published by the Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand.
Newman, S. (2015). Microsporidian impacts shrimp production. Global Aquaculture Advocate. https://www.aquaculturealliance.org/advocate/microsporidian-impacts-shrimp-production/
OIE (2019). Manual of Diagnostic Tests for Aquatic Animals – 14/11/2019. https://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/chapitre_ahpnd.pdf
Sánchez-Paz, A (2010). White spot syndrome virus: an overview on an emergent concern. Vet Res. 2010 Nov-Dec; 41(6): 43. Published online 2010 Feb 26. doi: 10.1051/vetres/2010015
Sritunyalucksanaa, K., l Intaraprasonga, A., Sa-nguanruta, P., Filerc, K., Fegand, D. (2011). Organic selenium supplementation promotes shrimp growth and disease resistance to Taura syndrome virus. Science Asia 37 (2011): 24-30. doi: 10.2306/scienceasia1513-1874.2011.37.024
Zhang, J., Liu, Y., Tian, L., Yang, H., Liang, G., Xu, D. (2012), Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 33 (2012) 1027-1032. https://www.hinter.com.cn/Upload/pdf/en/4.pdf
The most practical way to prevent diseases or reduce the losses caused by diseases is to have good farm management and enhance shrimp immune system.
O “Australia Farming Relief Fund” dará suporte aos produtores rurais atingidos pelos incêndios
Mesmo com o início das chuvas em alguns locais da Austrália, os incêndios continuam devastando grandes áreas do país. Estima-se que o fogo já tenha destruído 10 milhões de hectares, causando 45 mortes e devastando a fauna e a flora da região. Para auxiliar as vítimas do desastre, a Alltech, uma das companhias líderes em nutrição animal e vegetal do mundo, lançou uma campanha global de arrecadação de recursos.
O fundo Australia Farming Relief tem o objetivo de dar suporte aos produtores agrícolas do país e será coordenado pelas empresas Alltech Lienert e KEENAN Austrália, empresas que fazem parte da família global da Alltech.
“O fundo Australia Farming Relief representa uma ação conjunta entre a família Alltech, fornecedores, clientes e a agroindústria global a fim de dar suporte aos produtores que alimentam suas famílias e são os núcleos de nossas comunidades rurais”, disse Mark Peebles, Diretor Executivo da Alltech Lienert, que se localiza em Roseworthy, Austrália. “Os incêndios têm sido devastadores, mas os australianos são resilientes e comprometidos a mobilizar os fazendeiros enquanto se recuperam dessa crise”, complementa.
O setor avalia a perda em mais de 100.000 cabeças de gado. Os produtores, que já estavam passando por uma seca de três anos, estão sofrendo para administrar recursos e alimentos. Neste cenário, Alltech Lienert e KEENAN Austrália usam seus recursos para distribuir suprimentos doados pela comunidade local ou comprados com o dinheiro adquirido pelo fundo Australia Farming Relief.
Os suprimentos incluem pasto, matérias-primas, suplementos alimentares, silagem, bebedouros, cercas e itens não perecíveis. As companhias vão ceder seus caminhões e motoristas em Victoria, sul da Austrália, New South Wales (NSW) e Queensland. Membros da equipe da Alltech também serão voluntários e trabalharão lado a lado com os produtores rurais, reconstruindo cercas, consertando galpões e fornecendo qualquer suporte que os produtores necessitem em suas propriedades.
O esforço iniciará com foco nas fazendas com criações de bovinos, ovelhas e apiários. A Alltech também conta com parcerias que oferecerão suporte psicológico de longa duração aos fazendeiros que sofreram traumas com os incêndios. Doações ao fundo Australia Farming Relief, coletadas por meio da Fundação Pearse Lyons ACE, podem ser feitas no site: https://www.alltech.com/australia-farming-relief-fund.
Os incêndios na Austrália destruíram cerca de 10 milhões de hectares, com muitas mortes confirmadas, incluindo as de animais selvagens e de criação. O fundo Australia Farming Relief ajudará a fornecer bens e serviços diretamente aos produtores rurais afetados. As ações serão coordenadas pelas empresas da família Alltech, Alltech Alltech Lienert Australia e KEENAN Australia.
After 2019’s harvest, high levels of mycotoxins have begun to crop up in animal feed and forage across North America, with likely ties to last year’s delayed harvest and wet weather.
Despite initial data suggesting this year’s crop may have evaded predictions of widespread contamination, pockets of high levels of contamination have begun to appear in samples analyzed by Alltech, according to a technician with the company’s mycotoxin management team.