Skip to main content

Pearse Lyons Distillery: The inside story of a legacy

Submitted by aeadmin on Fri, 12/22/2017 - 09:13

Pearse and Deirdre Lyons could not have known when they met decades ago as teens at a Dublin rugby club dance that they would one day find themselves driving around the streets of a section of the Irish capital known as the Liberties in search of just the right place to house their legacy.

This quest was not about Alltech, the global animal health and nutrition company they had founded and nurtured to remarkable success. This was personal.

The story, one animated by shared imagination and powerful determination to overcome all manner of obstacles, is expressed in the location, history and reincarnation of a deconsecrated church that had known better days.

And who better to relate the story of Pearse Lyons Distillery at St. James than the Lyonses themselves?

Photo Credit: Conor McCabe Photography Ltd

Locating their legacy

Pearse recalled the day he and his wife Deirdre explored the Liberties district, one of Dublin’s most historic neighborhoods that had once hosted dozens of breweries and distilleries.

“I wanted something in Dublin, and I wanted something that would be close to Guinness for the simple reason that 1.6 million people visit Guinness every year,” he explained. “I’m a businessman, and I thought, ‘Okay, I need someplace close to the 1.6 million people.’ So I was looking in that vicinity.”

“It just so happened that we were driving down James’s Street,” said Deirdre. “This is the area where Pearse’s father and grandfather and his grandfather before him all grew up. Pearse's very first job was at Irish Distillers, which was, at that time Paddy, Powers and Jameson whiskey.”

They came upon St. James, a church that had been built before the signing of the Magna Carta. In the last century, it had been repurposed as a warehouse and a store, but it was sitting abandoned.

Pearse saw past its state of disrepair and envisioned the opportunity as real estate just steps away from Guinness.

He bought it.

Was there hope in this forsaken place?

“My first thought was, ‘Oh, no!’” said Deirdre. “When we walked in, I couldn’t believe it.”

It was bad. Very bad.

“The roof was leaking in many places,” she said. “We had all kinds of water damage, plaster damage and neglect. The beautiful stone columns that had come from Caen in Normandy were painted magenta. Where the beautiful ceiling is now, previous owners had hacked out the stone on each side and put in steel beams and a staircase for a mezzanine and above that, another mezzanine. All the windows were blocked up with cement blocks, both inside and outside.”

Additionally, they soon discovered that a buddleia, or butterfly bush, had started to grow from the top of the church. It was so powerful that the roots had come down and broken through a wall 9 feet thick.

At this point, many would likely begin having serious second thoughts. The Lyonses instead prepared themselves to move forward with the project.

A new classification creates complications

A major twist in the plot occurred when, only two weeks after the purchase, they were informed that the old church was to become a national monument.

This new designation began a multi-year, multi-million euro excursion through a sea of time-consuming, costly renovation and restoration work.

“We had to remove all of the plaster,” said Deirdre. “We had to then build it back with new plaster, but the new plaster had to be of the 18th century-style. So that meant it had to be a lime plaster with a rough finish.”

Since it can take up to six years for lime plaster to completely dry, a special and very rare silicate paint would be required — and there are only three on the planet.

“One of them happened to be in Ireland!” said Deirdre. “I wanted this warm, buttery yellow, like a glowing ‘wrap itself around you’ feel. The Irish firm had five or six shades of white. So we said no. The next one was in Slovenia. They sent samples that were very yellow. Unfortunately, 48 hours after their paint was tested, it changed color. So we did more research and found a German company called Keim. They do a lot of restoration of historical buildings, particularly with the paints that were used in medieval times, which were very muted colors. That worked perfectly.”

But no sooner had the paint issue been solved then another challenge arose. The old church had long ago lost its spire. So Deirdre turned her attention to its replacement.

“There had been no spire on the church since 1954,” she explained. “It had been struck by lightning, and it became dangerous, so it was taken down.”

Deirdre presented ideas for a new slate, copper or stone spire, but every idea was rejected by city officials.

But, said Pearse, “Deirdre doesn’t compromise. She was going to do something spectacular. She knew what she was doing, and she would not take any shortcuts. It took them a while to realize that this was a woman for whom it wasn’t money; this was a passion.”

Deirdre has a fondness for glass and came up with a concept for a glass spire that could be lighted at night. That idea was rejected.

“I was so frustrated at this point with everything that was rejected that I sought out a meeting with the city officials,” she said. “We shared our drawings, and they found them to be unique and exciting. Since we didn’t hear anything negative, we went ahead and created the spire.”

Deirdre’s vision for the interior called for custom-made stained glass windows decorated with depictions of the brewing, distilling and coopering that had been so characteristic of the Liberties.

“We presented the renders for the stained glass windows, but they were rejected on the premise that it had been a Protestant church, which would not have had stained glass,” she said.

To move forward with the stained glass windows, the Lyonses were invited to prove that they couldn’t be read from the outside of the church. Deirdre took this as a go-ahead to produce one of the windows and install it, since it would be the only way to test it.

“We created the south window first, which explains the brewing process,” said Deirdre. “It took a long time to sketch it and go to the glass company, a little two-person company way up in the north, pick out all the glass and lay the glass the way we wanted — because we wanted to use all of the colors that would be associated with the industry, like gold, amber, copper, some black and some warm browns and yet put them in a way that was very easy to read.”

Photo Credit: Donal Murphy

Once they installed the window, they invited the planners and zoners to come see it.

After opportunity for review, Deirdre decided to proceed to the next window. However, when the concrete blocks were removed, a couple small lattice pieces were discovered. Because the lattice pieces were original, the window could no longer be removed.

“We had to create our window and put it on what I call a ‘goal post frame’ and float it off the window,” said Deirdre.

Photo Credit: Donal Murphy

Classic copper pot stills, custom-made for the distillery by the Vendome Copper & Brass Works in Louisville, Kentucky, were transferred from their County Carlow location to the site. With the attempted move, an entirely new round of frustration gripped the project.

“We were a quarter of an inch shy of getting them through the biggest door,” said Deirdre. “We could take the door off, but we couldn’t remove the arch because we were afraid that the stone would not be able to support itself.”

But, where there’s a will, there’s a way. Workers were in the process of reinforcing and replacing the building’s roof.

“We got everything structurally right and then we left one section of the roof open,” said Deirdre. “We had a crane lift them in.”

Photo Credit: Donal Murphy

A legacy project becomes an ancestral tribute

Excavation to make room for the building’s new mechanical systems yielded yet another surprise. This one, at least, brought with it a most amazing serendipity.

“We soon unearthed bodies that we hadn’t expected at all,” said Deirdre. “In those days, graves were dug very deeply, and bodies were placed on top of bodies.”

An on-site archeologist oversaw a careful process each time a body was discovered. Each one was carefully taken to the National Museum of Ireland – Archaeology, where it was examined, dated and photographed. The bones would then be returned to rest at St. James.

“To accommodate all those bones, we actually had to create crypts under the floor of the church,” said Deirdre. “There were two crypts already in the church, but we had to put in five more.”

Then, there was a startling discovery.

Among those buried in the centuries-old church graveyard was none other than John Hubert Lyons, grandfather of Pearse.

The revelation unlocked something long hidden in the recesses of his memory.

“At age 4, my earliest recollection is of going to a funeral, an Irish wake,” he explained. “I saw this person, and I remember them saying it was my grandfather.”

The year was 1948.

“His parents were on holiday in France and had distributed all of the little ones to various aunts and uncles in the area,” related Deirdre. “So, Pearse and his older brother were taken in a horse-drawn carriage with the hearse. But he never knew that it was a funeral until he grew up. He was too young. It was hushed up. It all flooded back when we realized this. That then made it very important to Pearse.”

This personal commitment would prove critical as myriad obstacles continued to mount. For example, the Lyonses would present 17 renderings of a proposed visitors center before a plan would finally be approved.

Breathing life into the Liberties

Pearse hopes the beautifully restored distillery’s presence and energy breathes new life into the neighborhood.

“When you put a beautiful place up, people tend to step up,” said Pearse. “There are going to be a lot of refurbishments. I hope we’re alive to see it.”

“I have to say that, even though it was probably the most challenging job I’ve ever done, it’s also been the most rewarding,” said Deirdre as she reflected.

“The builders said that they loved working with Deirdre because she never changed her mind. Never,” said Pearse. “She has the vision of what she wants to do. I think this is what makes us a formidable team. It’s telling our story. It’s history.”

<>Premium Content
Off
<>Featured Image
<>Date
<>Brightcove Video
<>Page Title
Pearse Lyons Distillery: The inside story of a legacy
<>Meta Description
Required field
<>Featured Image License
Off
<>Regions
<>Post Type
<>Hubspot
<hr />
<h3>Lyons Den speakeasy of Pearse Lyons Distillery</h3>
<br>
<a href="https://www.alltech.com/lyons-den-speakeasy-pearse-lyons-distillery" style="color:#ffffff;text-decoration:none;background: #be531c;border:2px solid #be531c;border-radius:4px;padding:8px 14px;font-size:20px;">Enter Lyons Den</a>
<br>
<hr />
<p>
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Regions

For salmon’s sake: Seeking solutions to sea lice

Submitted by aeadmin on Fri, 12/22/2017 - 09:12

Whether you are a commercial producer of Atlantic salmon, an aquaculture research scientist or a consumer with a fondness for the fish, Lepeophtheirus salmonis matters.

In fact, this sea louse is the reason your salmon dinner is weighing heavy on your grocery bill. Market prices of farmed salmon have been reaching historic highs.

The tiny crustaceans, commonly known as sea lice, that feed on the mucous, skin and blood of the fish are a fascinating challenge for the aquaculture researcher but the bane of the producer’s existence.

With the world market for salmon estimated at $10.7 billion annually (IntraFish), salmon farmers in the major producing countries, such as Norway, Scotland, Canada and Chile, are racing to fight infestations of the damaging ectoparasites.

Marine Harvest of Norway, the world’s leading farmed salmon producer, reports the biological costs of harvested fish in the second quarter of 2017 were 16 percent higher compared to the second quarter of 2016, according to Undercurrent News.

Marine Harvest has reported that its health-related production costs remain near record levels. Most of those costs are attributed to mortality and sea lice mitigation.

Sea lice infections are natural phenomenon among wild Atlantic salmon. What’s relatively new is the introduction of large-scale fish farms — essentially enormous sea cages — tucked into sheltered areas along coastlines.

Image removed.

The trouble begins when wild lice-bearing salmon swim nearby.

“These natural populations of lice, whose juvenile stages drift with the current and attach to the salmon, are also brought to our shores on the backs of wild populations of salmon from their North Atlantic feeding grounds,” said John Sweetman, Alltech international projects manager for aqua. “As they come into the estuaries and bay areas to prepare themselves to go upriver and they meet lower salinity water, the sea lice, intolerant of freshwater, become detached from the fish.”

In those semi-saline conditions, the lingering juvenile sea lice become infectious agents preying on nearby caged salmon. The population density of these caged cultures allows the parasite to spread quickly and even contaminate the wild salmon population.

“Sea lice cause physical damage,” said Sweetman. “Physical damage in the skin of the animal allows opportunistic pathogens to penetrate the skin. So, you have opportunistic bacterial pathogens entering through the damage and disruptions in the membranes and barrier structures of the skin.”

The result is a deadly cocktail of ailments: decline in disease resistance; edema; cellular inflammation; hyperplasia; epithelial shedding; hemorrhaging; mucus discharge; osmoregulatory stress; and decreased appetite.

Marine Harvest has watched feed conversion ratios decline due to reduced feeding appetite following biological issues.

The resulting annual losses to salmon farmers in Norway alone now exceed €500 million.

Searching for a sea lice solution

A process of elimination has been underway in the search for solutions that satisfy production economics balanced against consumer demand for food source transparency and safety.

Image removed.

No current strategies provide complete protection; few surpass 50 percent protection, according to Dr. Karl Dawson, vice president and chief scientific officer at Alltech.

Mitigation approaches have included emamectin benzoate. Introduced in 2000 and marketed as SLICE®, the antimicrobial is fed to salmon, poisoning any sea lice nibbling on the tissue of the fish.

“But in recent years, a resistance has been developing, so today’s effective dose is about five times what it used to be and continues to increase,” Dawson stated in a presentation at ONE: The Alltech Ideas Conference 2017.

Hydrogen peroxide baths were once popular among Norwegian salmon producers until food safety regulators raised concerns. Thermolicers, another approach, plunge the salmon through heated water that kills sea lice, but also can damage the fish.

Other strategies, such as sea bath treatments, can be highly disruptive to salmon farms. Once-promising pharmaceutical treatments have become less effective as drug resistance has developed.

Today, producers are looking to holistic management programs to battle sea lice. In Norway, those mitigation costs pile on top of production expenses resulting from heavy regulation.

“We’re talking about an average 0.5 lice per fish as the upper limit before a treatment has to be undertaken in a region to reduce lice burdens on the fish,” said Sweetman.

New facilities being built in Norway are designed to hold fish longer before being transferred to sea cages. The idea is to reduce the amount of time the salmon spend in the sea, exposed to sea lice.

In 2016, Chile, another of the world’s major producers of Atlantic salmon, became the first country to approve an in-feed treatment formulated by Elanco. Studies are said to show that the treatment inhibits the formation of chitin in sea lice, preventing the lice from developing into adults. Fish treated with the medication are now accepted for trade with many major export markets, including the United States, European Union, Japan and Brazil, according to SeafoodSource.com.

A non-pharma option in the arsenal against sea lice

Led by Dawson and Dr. Keith Filer, research coordinator for aquaculture at Alltech’s Kentucky facility, Alltech and its research partners are investigating a novel approach inspired by work with a specific mannan-rich cell wall fraction (MRF) in other animals.

“The interest in using this material originally came from studies in chickens that indicated that early life exposure to the mannan-rich fraction improved the innate immunity of chickens,” said Dawson.

The Alltech scientists believe this innate immunity is critical to developing resistance to ectoparasites like sea lice. It is the basis for current efforts by Dawson, Filer and their team to expose young fish to the fraction early in life.

The MRF is a carbohydrate derived from the outer cell of a specific strain of yeast — Saccharomyces cerevisiae 1062 — using a proprietary process developed by Alltech. Its use as a feed supplement in terrestrial animals has been well-documented in more than 500 trials and numerous peer-reviewed papers, and recently its effectiveness in aquaculture has been established, according to an International Aquafeed article on gut morphology that Sweetman co-authored with Arkadios Dimitroglou, Simon Davies and Silvia Torrecillas.

The researchers reported that the MRF “not only improves the gastrointestinal morphology and therefore its function through an increased absorptive surface and better absorptive capability but also interacts with the immune system in a modulatory manner and alters enzymes. The combination of all these benefits results in better performance, livability and optimum immune response and therefore gives a more cost-effective production of interest to the commercial producer.”

As salmon begin to mature, they adapt for life in salt water in an intermediary stage known as smolting, which Filer sees an opportune time for priming their immune system by exposure to novel feed ingredients.

“The mucous system of the fish is considered a portion of their innate immunity,” he explained. “So, it would enhance their mucous production, and then when they’re put out to sea, it would enable them to be able to fight those ectoparasites.”

“That was extremely interesting for us in the aquaculture industry, because the mucus associated with the gut is a key component of the innate immune system,” said Sweetman, whose original work got underway in the Mediterranean in 2004 with an initial trial among salmon, sea bass and bream.

“A fish is exposed to the environment, and the first point of contact of the environment is on the mucosal layer, the skin, the gills and the gut of the fish,” he said. “That’s where opportunistic pathogens and other insults are derived from water. So, if we can improve the mucosal status and the gut structure associated with poultry, we should be able to do it with fish.”

Alltech is currently supplying an MRF product to the Norwegian salmon industry. When used as a feed supplement, it has been shown to increase external mucous production on the surface of the fish, which improves overall innate immunity and disease resistance of the fish. Active supplementation has reduced sea lice infections by up to 57 percent, according to Sweetman.

This is a novel approach for nutritionally enhancing disease resistance and controlling the pesky sea lice.

"In looking to the future, the industry will have an additional tool in the arsenal to improve the resistance of salmon to sea lice infections," said Dawson. "This tool will be a centerpiece of advanced control mechanisms as new and more effective ways of administering the supplements become available."

 

I want to learn more about aquaculture nutrition.

<>Premium Content
Off
<>Featured Image
<>Date
<>Page Title
For salmon’s sake: Seeking solutions to sea lice
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: "745395",
formId: "9a2b89e0-455d-49e8-927e-620466728a8d"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions

A nation hungry for change: Food insecurity in the United States

Submitted by aeadmin on Fri, 12/22/2017 - 09:11

Former Iowa Governor and U.S. Secretary of Agriculture Tom Vilsack recently led a discussion amongst four other past U.S. Secretaries of Ag — Dan Glickman, Ann Veneman, Mike Johanns and Ed Schafer — at the 2017 Iowa Hunger Summit. Their primary objective was to address a less commonly realized but ever-prevalent issue affecting U.S. citizens: food insecurity.

Some may be asking themselves what exactly the term “food insecurity” means. It is defined as being without consistent access to an adequate supply of reasonably priced, healthy food. And, while it may seem almost inconceivable for such a highly developed country to be dealing with an issue like hunger, according to the United States Department of Agriculture’s Economic Research Service, it’s an unfortunate reality for some 41.2 million Americans living in food-insecure households.

Fortunately, the U.S. has one of the most comprehensive feeding programs in the world, offering the Woman, Infants and Children (WIC) program, Supplemental Nutrition Assistance Program (SNAP) and National School Lunch Program (NSLP).

Yet, programs like SNAP have no restrictions. People may buy whatever unhealthy options they wish to, and often do. So, the question arises: Should we limit participant options? And, while we’ve come a long way from the days of food stamps and the associated stigmas, many feel that restricting offerings would only serve to further reinforce shame felt by program participants.

Domino effect

According to estimates from the 2015 U.S. Census Bureau, the official poverty rate is roughly 13.5 percent, meaning over 43 million Americans are living on an insufficient income. The nation also sits at a record high obesity rate; according to the Centers for Disease Control and Prevention (CDC), 36.5 percent of U.S. adults are considered grossly overweight. It would seem these two issues go hand in hand with the issue of food insecurity.

People are not only undereducated on nutrition but are often unsure how to prepare food. To put it simply, many people don’t know how to cook anymore. Without this knowledge, most seek quick, convenient and often calorie-dense options.

And we are paying a high price for these correlations:

  • Globally, more people are dying of non-communicable diseases (e.g., heart disease and diabetes) than communicable diseases. According to the World Health Organization (WHO), unhealthy diets and lack of physical activity are some of the top reasons for premature death.
  • Obesity is one of the biggest drivers of healthcare costs. In fact, the fastest growing part of the U.S. budget is healthcare. The United States spends an estimated $147 to $210 billion annually on costs associated with preventable chronic diseases.

Focus on nutrition, not just hunger

The panel did seem to collectively agree that nutrition education should continue to be a top priority. The Expanded Food and Nutrition Education Program (EFNEP) was established nearly 50 years ago to help with nutrition and exercise-related behaviors for low-income families, particularly those with small children. SNAP to Health is another example of an effective program aimed at reducing food insecurity and promoting better nutrition for Americans. Additionally, many grocery store chains are now employing dietitians to help consumers make better choices, often at little to no cost.

How agriculture can help

We must continue to be proactive in our efforts to end hunger in this country. Not surprisingly, agriculture will continue to play a critical role. We are making headway with efforts such as the expansion of farmers markets and local food options, more widely available crop insurance and risk management tools, and the establishment of farm-to-school program grants for sourcing local foods. But the hard work can’t stop there. As our population continues to grow and weather patterns shift, we will need to continue to examine new resources, fresh ideas and innovative technologies, all aimed at making food insecurity a thing of the past.

How do you think the future of farming will impact issues like food insecurity? A panel of agribusiness experts recently discussed “Farming the Future” and what it may hold for not only agriculture, but the entire food supply chain.

Watch Farming the Future

<>Premium Content
Off
<>Featured Image
<>Date
<>Page Title
A nation hungry for change: Food insecurity in the United States
<>Meta Description
"Food insecurity" is defined as being without consistent access to an adequate supply of reasonably priced, healthy food.
<>Featured Image License
Off
<>Regions
<>Industry Segment
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Regions

Personalized medicine, precise nutrition

Submitted by eivantsova on Thu, 12/21/2017 - 09:48

Precise nutrition, personalized nutrition, targeted medicine, precision medicine, targeted cancer therapies, targeted gene nutrition and cell nutrition: These are some of the emerging technologies that are rapidly moving us into new frontiers of medical and nutritional innovation.

These innovative technologies have the potential to change the way we (and our animals) live and cope with illnesses and devastating diseases such as cancer.

Recently, the U.S. Food and Drug Administration approved a new cancer treatment called CAR T cell therapy. CAR T stands for “chimeric antigen receptor T cell.” T cells harness the body’s immune system to fight cancer cells. The thought behind CAR T is to use a patient's own immune system T cells and engineer them in such a way that the T cells can better recognize cancer cells and neutralize them without damaging organs or causing harm to the individual.

The National Cancer Institute website provides excellent information on targeted cancer therapies. Most of these therapies focus on drugs (ones that are already approved to treat specific types of cancer or are in development) that utilize an individual’s unique genes to treat the disease.

Would it be possible to use the information on a person’s or animal’s genes to identify whether the individual may be predisposed to develop a devastating disease such as cancer? And would it be possible to use such information to prevent the onset of such a disease?

Last year alone, it was estimated that some 1.6 million Americans would be diagnosed with cancer. The key is to understand what drives cancer and its different forms, what genes are involved and how we can downregulate (“turn off”) their expression.

There are already several studies taking place, and research is ongoing in the field of animal nutrition, demonstrating the impact that nutrients have on gene expression and how such expression affects performance and health. As work continues to expand in this field and into human and companion animal nutrition, we may be able to design diets based on the genetic makeup of a person or animal.

This is a game changer. Imagine providing diets that will feed the unique genes, provide a healthy life, and reduce or delay the onset of disease. Once we understand what an individual’s gene requirement is for certain nutrients such as selenium, zinc or a fatty acid, precise nutrition could provide an optimized diet that’s just right for their body’s needs.

Want to learn more?

<>Premium Content
Off
<>Featured Image
Personalized medicine, precise nutrition
<>Date
<>Featured Image License
Off
<>Image Caption
As research continues on the impact of nutrients on gene expression, we may eventually have the ability to design diets based on the genetic makeup of a person or animal.
<>Hubspot
<!--HubSpot Call-to-Action Code --><span class="hs-cta-wrapper" id="hs-cta-wrapper-b593523b-62d8-41d5-80ae-22d6f20cb736"><span class="hs-cta-node hs-cta-b593523b-62d8-41d5-80ae-22d6f20cb736" id="hs-cta-b593523b-62d8-41d5-80ae-22d6f20cb736"><!--[if lte IE 8]><div id="hs-cta-ie-element"></div><![endif]--><a href="https://cta-redirect.hubspot.com/cta/redirect/745395/b593523b-62d8-41d5-80ae-22d6f20cb736" ><img class="hs-cta-img" id="hs-cta-img-b593523b-62d8-41d5-80ae-22d6f20cb736" style="border-width:0px;" src="https://no-cache.hubspot.com/cta/default/745395/b593523b-62d8-41d5-80ae-22d6f20cb736.png" alt="Click here to subscribe to our Pet Chat newsletter"/></a></span><script charset="utf-8" src="https://js.hscta.net/cta/current.js"></script><script type="text/javascript"> hbspt.cta.load(745395, 'b593523b-62d8-41d5-80ae-22d6f20cb736', {}); </script></span><!-- end HubSpot Call-to-Action Code -->
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Image Caption

<p>As research continues on the impact of nutrients on gene expression, we may eventually have the ability to design diets based on the genetic makeup of a person or animal.</p>

Fresh start: Success on the cattle farm

Submitted by eivantsova on Tue, 12/19/2017 - 15:26

2017 was a hard year for many producers, with many difficulties that could not have been prevented. However, the new year is an opportunity for a fresh start. Here are three simple things you can do to bounce back and make 2018 your best year yet:

STOP problems before they start — give your cattle the minerals they need.

When we see sick cattle in the field during the spring, we follow the trail of breadcrumbs back to January. Most of the time, we find that these cattle were not given the right minerals to prepare them for the winter and early spring challenges of calving and wet conditions. Alltech’s Bioplex®organic trace minerals, when combined with Sel-Plex® organic selenium, provide mineral nutrition in a form as close to nature as possible and are scientifically proven to be more bioavailable than inorganic mineral sources.

LOOK: Keep an eye out for mycotoxins.

2017’s hurricanes have left the ground wet in the southern U.S., and this can be a harbinger of mycotoxins, but don’t let this stop you from having a good year.

If you’d like to know what you are dealing with, take the Alltech 37+® mycotoxin analysis. This test checks for more than 40 different kinds of mycotoxins, detecting them before you put your cattle at risk.

SAVE time tidying your farm — leave these barrels in the pasture!

Eliminate labor and costs associated with collecting and returning steel barrels or disposing of plastic containers. The CRYSTALYX® BioBarrel® is designed with Single-Trip Container (STC®) technology, which biodegrades naturally in the field. The end result is environmentally friendly and labor-friendly, with virtually no cleanup or disposal issues.

Because the barrel disappears, it's easy to see how much is left as you check pastures.

“The BioBarrel pays for itself,” said Felix Serna from Kingsville, Texas. “You don’t create any extra labor to go pick them up, and it’s not an eyesore because it disappears as the cattle eat the product!”

Find out where you can get BioBarrels and save time on your farm next year.

Have a question or comment?

<>Premium Content
Off
<>Featured Image
Fresh start: Success on the cattle farm
<>Date
<>Meta Description
Many farming challenges are inevitable. However, there are measures that cattle farmers can take to help set the stage for a healthy, profitable year.
<>Featured Image License
Off
<>Image Caption
Many farming challenges are inevitable. However, there are measures that cattle farmers can take to help set the stage for a healthy, profitable year.
<>Hubspot
<div>&nbsp;</div>
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Programs and Services
<>Image Caption

Many farming challenges are inevitable. However, there are measures that cattle farmers can take to help set the stage for a healthy, profitable year.

Dr. Karl Dawson: The biologist's toolbox

Submitted by eivantsova on Thu, 12/14/2017 - 09:54

The following is an edited transcript of Tom Martin’s interview with Dr. Karl Dawson, vice president and chief scientific officer at Alltech.

Tom:                            Dr. Karl Dawson is the vice president and chief scientific officer at Alltech and directs activities at the company’s bioscience centers around the world, including Alltech’s Center for Animal Nutrigenomics and Applied Animal Nutrition, where he is the co-director. We thank you for joining us.

Karl:                             Thank you.

Tom:                            The gene editing technology CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) allows researchers to quickly change the DNA of nearly any organism, including humans. Would it be fair to say that the implications are pretty enormous?

Karl:                             Yes. CRISPR is going to change the way we think about breeding processes, the way we think about changing the genetics of livestock, plants. Even microorganisms will be changed using this type of technology. In terms of the way it will move forward, it has ramifications for just about anything we think about in terms of the overall breeding process and the way we think about using genetics and the genetic material that’s in an animal, plant or other organism.

Tom:                            How does this differ from gene modification?

Karl:                             CRISPR could be considered a form of gene modification. It is different in that it is a very precise tool where we can go in and pick out very specific sites on this long DNA molecule and we can put things in or take things out of it. It is a form of editing or changing a gene structure. And it can be used to not only delete specific genes or pieces of DNA, it can also be used to add in pieces of DNA. So, we can make genetic modifications that way. The difference is that we don’t necessarily have to use a transgenic approach, which means we’re not taking material from other organisms and putting it into a new organism. We’re not changing or bringing two types of DNA together, if you’d like.

Tom:                            So, what are the implications for agriculture, for food?

Karl:                             For food, it is a very fast way of changing and, very specifically, changing specific genetic pieces or genetic information. If you take, for example, some of the things that are being done, one of the examples we look at is the polled cattle. Calves are very oftentimes dehorned when they’re young. Dairy cattle are dehorned. That is a process that is rather uncomfortable for the animal, and it’s something that is very difficult to do, but it is very important because it changes the safety of handling that livestock. There has been a CRISPR approach used to change that in livestock. With traditional breeding, you can cross a hornless animal — a polled animal — with a dairy cow and produce a hornless animal. But when you do that, the productivity of that dairy animal changes considerably because lots of other things change when you do that genetic cross.

                                    The idea of CRISPR is that we could actually go in and take the very specific gene that’s associated with that horn formation and eliminate that gene, or poll that gene. And when we do that, we are doing it almost immediately. The difference is, if I bred that animal or did that through traditional crossbreeding, it would probably take 25 years to produce a high-producing dairy cow with that polled characteristic. In this case, we can do it within calves immediately. No time changed. The next generation of animals will have that specific gene.

Tom:                            Wow. Pretty exciting, isn’t it?

Karl:                             That’s powerful stuff.

Tom:                            How does this technology impact the whole GMO debate?

Karl:                             It’s going to change the GMO debate a little bit. There’s still a lot of controversy in this area. Typically, if you look at CRISPR technology, there are a number of other of these. There’s one called TALEN (transcription activator-like effector nucleases) that’s out there and zinc-finger modifications or nucleases that do the same thing. But when you do this, you can go very specifically to a site in the DNA and make your changes. You’re not introducing any new DNA, so it is no longer a combination of DNA from two animals or transgenic. It is, in fact, just maintaining one type of DNA. As a result, it’s not necessarily a traceable activity. So, theoretically, you could actually do a CRISPR transformation of a particular gene and you would not know that it was any different than a natural mutation process. The only thing is that you directed that very specifically to a very specific gene and a very specific chromosome in that animal.

Tom:                            Getting genetically modified crops approved for use is complex and expensive, and most of the crops that have been modified are large commodity crops: corn, soybeans. Could the ease and low cost make genome editing a viable option for smaller specialty crops as well as animals?

Karl:                             I think it could. There’s going to still be an economic barrier there, I’m sure, whether you could do it economically, but it is a very rapid way. This type of technology is not that complex. In one presentation I heard the other day about this, they were talking about this being something some people could do in their basements one day. So, it’s not that complex to take over. So, yes, it may in the long run be a technique that is used to do that very rapidly in smaller crops, different organisms, even fungi and things like that that we use for food manufacturing.

Tom:                            The implications of the science are pretty profound. Even possibly a little scary. What about worries that the field’s breakneck pace is leaving little time to talk about ethical and safety concerns?

Karl:                             Just about every time you talk about CRISPR, that type of information comes up or that kind of discussion comes up. I guess it is a little bit scary if you think about some of the potentials of these things. One of the areas that we’ll talk a little bit about tomorrow in our gene editing presentation relative to mosquito control is that we have gene editing capability right now that will develop what’s called a “gene drive.” A gene drive will actually make it so a specific gene is always transmitted to the offspring. So, if you think about the possibilities there of transmitting a lethal gene to a mosquito, it’s possible to actually cause the extinction of that species. That is not a long time off, either. You could actually do that very easily and change the ecology of the system completely. It’s nice that we want to get rid of mosquitos and we don’t have to swat them anymore, but the activity here says, yes, you could do that, but what happens to the rest of the ecology if that happens?

Tom:                            Let’s take this opportunity to turn to your work on the Zika virus, if we could. If you can bring us up to date where you are.

Karl:                             This is more of an insect-control concept that we’re working on right now. Quite frankly, the Zika virus in our case is used as an example of what might be done in insect control. Our goal is really to look more at some of the other insects — for example, fly problems in the livestock industry. They face flies, and horn flies, and things like that. But the Zika virus gives us an opportunity to see what can happen with the mosquito population. It is probably more developed in terms of population control than any other insect population. Zika has allowed us to put a lot of emphasis on that today. So, there are a number of techniques that are being used to control mosquitos using both molecular tools such as gene editing as well as particular bacterial control systems that will help eliminate the carrier or vectors for these diseases.

Tom:                            And does that steer us away from chemicals?

Karl:                             Absolutely. One of our big limitations is the development of resistance to pesticides. There are mosquitos today that are extremely resistant. It takes five, 10, 15 times more insecticide to kill the same mosquito that was killed 20 to 30 years ago. So, it is changing very dramatically. The idea here would be to move away to more natural control mechanisms or more sophisticated and more efficient control mechanisms.

Tom:                            What ag-tech trends are you watching these days? Which ones really excite you?

Karl:                             One of the areas we talked about today was programmed nutrition and the idea of programming animals to get very specific responses, whether it’s an immune response or growth efficiency or better reproduction. One of the tools we have today is the use of appropriate nutrients at very specific times of an animal’s life. “Programming” young animals to be resistant to disease or “programming” animals to use a lot less minerals in their diets. Those are things that are very exciting because they’re changing the paradigm of what we used to think was common nutrition.

                                    We no longer just think about the diet composition or the nutrient composition of a diet. We start thinking about, “Well, how do we strategically use that nutrient component to change what the animal is doing throughout its life?” Those same concepts are being used to improve meat quality and product quality from livestock or even plant quality. We can use that nutritional approach to do those types of things. So, I think that’s one of the most exciting things that we’ve worked on recently.

                                    Technology is moving so fast in the agricultural field today. I’ve been at a loss to say I know what are going to be the best trends, but those things that have to do with nutrition are going to be very important to us in the future. I think gene editing, in some form or another, is going to be a very important area for us to think about in the future. It’s not going to be in the traditional ways we think about it. But if you think about the barriers, for example, right now, there is no genetically modified livestock that are being used in food production today; part of that is the fear of what recombinant DNA really looks like, but some of it is the lack of understanding of what some of those molecular changes are. There are cattle that have been developed in China recently. They’re totally resistant to tuberculosis. That was the result of a gene editing. The PRRS (Porcine Reproductive and Respiratory Syndrome) virus in pigs, we have genetically modified animals or used a CRISPR-type gene editing technology to make pigs resistant to the PRRS virus. So, those things are happening. Whether those will be accepted or not, that’s outside of my area of expertise, but the technology is there, and it’s going to change. So, we have to get ready for that type of technology.

Tom:                            I have to believe you must spend a lot of your time being fascinated.

Karl:                             Yes. There’s lots to do. Yes.

Tom:                            What’s the most interesting part of your work?

Karl:                             I’ve been doing this for quite a few years now, and I think the neatest thing that I have to do is — not the science space — but it’s the ability of the younger people we’re producing in science today to come up with innovative ideas. I was involved with the Alltech Young Scientist program here. The brilliance of these young minds, it just always blows me away, and it’s something I like to be involved with. Maybe it’s not a real basic science, but it’s that educational process that leads to innovation that I get excited about.

Tom:                            Dr. Karl Dawson, vice president and chief scientific officer at Alltech. We thank you so much.

Karl:                             Thank you.

Dr. Karl Dawson spoke at ONE: The Alltech Ideas Conference (ONE17). To hear more talks from the conference, sign up for the Alltech Idea Lab.

<>Premium Content
Off
<>Featured Image
Dr. Karl Dawson: The biologist's toolbox
<>Date
<>Featured Image License
Off
<>Image Caption
"CRISPR is going to change the way we think about breeding processes, the way we think about changing the genetics of livestock, plants. Even microorganisms will be changed using this type of technology." — Dr. Karl Dawson on gene-editing.
<>Soundcloud
The SoundCloud content at https://soundcloud.com/alltech-1/039-the-biologists-toolbox-dr-karl-dawson is not available, or it is set to private.
<>Hubspot
<!--HubSpot Call-to-Action Code --><span class="hs-cta-wrapper" id="hs-cta-wrapper-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302"><span class="hs-cta-node hs-cta-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" id="hs-cta-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302"><!--[if lte IE 8]><div id="hs-cta-ie-element"></div><![endif]--><a href="https://cta-redirect.hubspot.com/cta/redirect/745395/ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" target="_blank" ><img class="hs-cta-img" id="hs-cta-img-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" style="border-width:0px;" src="https://no-cache.hubspot.com/cta/default/745395/ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302.png" alt="Sign up for Alltech Idea Lab"/></a></span><script charset="utf-8" src="https://js.hscta.net/cta/current.js"></script><script type="text/javascript"> hbspt.cta.load(745395, 'ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302', {}); </script></span><!-- end HubSpot Call-to-Action Code -->
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Regions
<>Topics
<>Image Caption

"CRISPR is going to change the way we think about breeding processes, the way we think about changing the genetics of livestock, plants. Even microorganisms will be changed using this type of technology." — Dr. Karl Dawson on gene-editing.

High levels of mycotoxins in 2017 harvests: Can you safeguard your animals and salvage your feeds?

Submitted by eivantsova on Wed, 12/13/2017 - 15:27

Silage samples from across the U.S., Canada and Europe have shown high levels of mycotoxins, according to the Alltech 2017 Harvest Analysis. The high reading comes on the heels of similar findings in 2016.

As the name implies, mycotoxins are toxic. They can negatively affect the health of animals if contaminated feedstuffs are ingested. The symptoms can be many and varied, but the outcome in all cases will be reduced performance and lost profits.

Produced by certain molds, more than 500 mycotoxins have been discovered to date. Each affects the animal or human in a certain way. Some mycotoxins are carcinogenic, neurotoxic and immunosuppressive.

Climate change and feed storage practices are starting to influence the range of molds occurring in farm feedstocks. And with traditional tilling and crop rotation practices diminishing in many developed countries, mold contamination is persisting year-on-year, making the multiple mycotoxin threat very real.

U.S. sampling shows high mycotoxin count

Samples from American farms submitted to the Alltech 37+® mycotoxin analytical services laboratory in Kentucky between Sept. 1 and Nov. 1, 2017, show that grains contained mixtures of mycotoxins, including deoxynivalenol (DON), fusaric acid and fumonisin.

Fumonisin is commonly found in corn at levels of 2 parts per million (ppm) or less, but this year, testing has confirmed levels well above 30 ppm, and some above 100 ppm.

Forages such as corn silage, barlage and haylage samples also contained multiple mycotoxins in 2017, including DON, fusaric acid, type A trichothecenes (T-2) and fumonisin.

“It’s particularly high right now,” said Dr. Max Hawkins, nutritionist with the Alltech® Mycotoxin Management team. “In the Wisconsin-Minnesota area, we’re about seven-tenths of a mycotoxin-per-sample higher than a year ago. More of the samples we’re seeing have the mycotoxins in them, and the major toxins that are present are four to five times higher than they were a year ago.”

The Canadian findings are much the same

Samples submitted for the Alltech 2017 Canadian Harvest Analysis indicated high levels of DON and zearalenone (ZEA) in grain and forage.

Submitted between Sept. 1 and Oct. 15, 2017, the samples show that grains contained mixtures of mycotoxins, including DON and ZEA. Forages such as corn silage, barlage and haylage samples also contained multiple mycotoxins in 2017, particularly from mycotoxins produced by Fusarium species of molds, such as DON, ZEA and T-2/HT-2 toxins.

Mycotoxin risk levels high in Europe, as well

The Alltech 37+ lab in Dunboyne, Ireland, analyzed samples of wheat, barley, corn, corn silage and grass silage submitted from across Europe. The grain crops are showing risk levels of trichothecenes from DON and T-2 to swine. Silages are showing risk levels of not only DON and T-2, but also high levels of Penicillium and, to a lesser degree, aflatoxin, according to Alltech’s 2017 European Summer Harvest Analysis.

What’s causing this?

Weather conditions can be a major influence.

“Some areas have seen record levels of rain, some areas are experiencing record drought conditions,” Dr. Alexandra Weaver, Alltech Mycotoxin Management technical specialist, said of the European findings. “That’s going to play a big role in the level of mycotoxins you see as well as what types of mycotoxins.”

Weather factors are also suspected in the United States.

“A lot of areas have gone through a cool, wet summer, and cool, wet weather is the preferred environment for Fusarium mold,” said Hawkins. “Fusarium is the mold that produces DON, T-2, ZEA and fusaric acid. Those are the mycotoxins that can become very problematic, and they already appear to be very problematic this year in the corn silage crop.”

Higher levels of mycotoxins appear to be a lingering legacy of the havoc Hurricane Harvey delivered to the Texas Gulf Coast in mid-August.

“In Texas, we have really dramatically high levels of fumonisin,” said Hawkins. “You can track it northward from where that rainfall came up from the Gulf and across the Texas panhandle into Kansas and Nebraska. The levels of fumonisin will begin to decrease, but they’re still much higher than we would typically see in those areas.”

Weather’s important, but there are other factors

While weather is linked to the higher mycotoxin rates of recent years, Weaver suggested that other important factors are contributing to the scope of the findings, including better detection methods as well as increased awareness among farmers.

“We have better ability to test for these toxins now; different agronomic practices play a role — the idea of ‘no-till’ versus ‘till’ has an influence; the use of fungicides may have an influence,” she said. “So there are things that play into this whole topic rather than just the weather, but certainly weather events with excess moisture are going to have a big impact.”

Watching for co-occurrence of mycotoxins

The Alltech 37+ analysis examines over 40 individual mycotoxins in minute levels: parts per billion. The laboratories are especially vigilant for samples containing more than one type of mycotoxin.

“We have a fairly thorough understanding of the additive effects of mycotoxins,” said Hawkins. “But many mycotoxins can have synergistic effects for DON and for fusaric acid. When you have those two together in the same feed or the same ingredient, one plus one does not necessarily equal two. One plus one may equal three, four or five in terms of magnified or synergistic effects.”

Mycotoxins present researchers with challenging paradoxes. Feeding multiple mycotoxins at low levels can be as detrimental or worse than feeding one mycotoxin at a high level, explained Hawkins. One mold species may produce many different mycotoxins, and several species may produce the same mycotoxin.

Hawkins wants people to be aware of multiple mycotoxins and the risk that they present.

“As you make more complex feeds with more ingredients, you’re bringing more and different combinations of mycotoxins into one place, where the animal will have the opportunity to consume it, so the opportunity for risk goes up,” he said.

Helping farmers gain the advantage

The Alltech® RAPIREADTM  tool delivers an integrated system of tools and technologies to the farm to enable quick on-site analysis.

“It’s a handheld lateral-flow device,” explained Hawkins. “We can take samples on-farm for feed ingredients — corn, grain, distillers grains, corn silage — and we don’t check for a broad array of toxins, we’re looking for one, two or three toxins that could be on a very problematic level.

“So, for example, if we’re in Texas, we might be checking corn grain for high fumonisin levels; if we’re in Wisconsin, we might be checking corn silage for high DON or high T-2 levels,” he continued. “And we can give them that answer on the spot within 10 to 20 minutes.”

Based on the information produced by RAPIREAD, the Alltech team can put together a basic management program to help the farmer mitigate the risk of animals going through a period of stress or suffering.

“When the analysis comes back showing extremely high levels of mycotoxins in corn silage — to the point that they didn’t think that they would be able to feed that corn silage — the Alltech team can show them how they can continue to feed the silage they’ve invested in,” said Hawkins. “Alltech puts together a program, monitoring and tweaking as they go along. We can show them that, if they manage it properly in the right program setting, they can still use a feed that has mycotoxins present.”

Alltech® MIKO, a program based on HACCP principles (Hazard Analysis Critical Control Points), identifies the mycotoxin risks within a farm or feed mill and creates a plan to minimize the risks to the animal and protect the profitability of operations.

Alltech’s Mycosorb A+® reduces the threat of mycotoxins in animal feed. The technology reduces mycotoxin absorption within the animal, negating the damaging effects of mycotoxins on its health.

“Farmers should carefully consider if and how feed with mycotoxins is used,” cautioned Weaver. “Even minimal changes in feed quality can have a big impact on an animal’s production over time.”

Effective mycotoxin management is about seeing the whole challenge, from the farm to feed mill and from risk assessment to feed management.

The Alltech Mycotoxin Management team has produced a number of species-specific fact sheets, which explain the impact of mycotoxins.

For more information about mycotoxins and to view a collection of case studies, visit knowmycotoxins.com.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--HubSpot Call-to-Action Code --><span class="hs-cta-wrapper" id="hs-cta-wrapper-13b99702-be4a-439d-bdad-949162e12275"><span class="hs-cta-node hs-cta-13b99702-be4a-439d-bdad-949162e12275" id="hs-cta-13b99702-be4a-439d-bdad-949162e12275"><!--[if lte IE 8]><div id="hs-cta-ie-element"></div><![endif]--><a href="https://cta-redirect.hubspot.com/cta/redirect/745395/13b99702-be4a-439d-bdad-949162e12275" ><img class="hs-cta-img" id="hs-cta-img-13b99702-be4a-439d-bdad-949162e12275" style="border-width:0px;" src="https://no-cache.hubspot.com/cta/default/745395/13b99702-be4a-439d-bdad-949162e12275.png" alt="Watch the 2017 U.S. Harvest Analysis Webinar "/></a></span><script charset="utf-8" src="https://js.hscta.net/cta/current.js"></script><script type="text/javascript"> hbspt.cta.load(745395, '13b99702-be4a-439d-bdad-949162e12275', {}); </script></span><!-- end HubSpot Call-to-Action Code -->
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Programs and Services

Dr. Jud Chalkley: Disrupting the medical hierarchy

Submitted by eivantsova on Fri, 12/08/2017 - 11:49

The following is an edited transcript of Tom Martin’s interview with Dr. Jud Chalkley, a practicing physician with St. Joseph Hospital KentuckyOne Health in Lexington, Kentucky.

Tom:                            To suggest that there is disruption in the healthcare market is an understatement these days. Joining us is Dr. Jud Chalkley, a practicing physician with St. Joseph Hospital KentuckyOne Health in Lexington, Kentucky. We thank you so much for joining us.

Jud:                              Thank you for having me.

Tom:                            Dr. Chalkley, you talk about disruption in the medical hierarchy. What do you mean by that?

Jud:                              I think as we look around and see what’s going on in the healthcare industry in the United States, we see a big chaotic mess.

Last year, we spent $3.2 trillion on healthcare in the United States. About 10 percent of it went to primary care, which is the area that I’m going to be talking about at ONE: The Alltech Ideas Conference. I think we all saw the animosity, the lack of understanding, the infighting and the politics of the Obamacare legislation. And now, we see it again in the Trump legislation. So, I’m not picking on either political party in this discussion, but looking at alternative ways to provide care in a much more dignified way for the patient.

In Mexico at SuKarne — a beef manufacturer — I learned of a healthcare network called Salud Digna, which is Spanish for “healthcare with dignity.” I think we need to restore that in American healthcare. I also think we need to restore the idea of the doctor-patient relationship where your doctor is your friend and your confidante — not just somebody who’s filling out forms, typing away on his iPad and spending an inordinate amount of time in electronic medicine rather than real medicine while taking care of a patient.

There was a study in the Journal of the American Medical Association (JAMA) from December of 2015 where they followed the interns at Johns Hopkins Hospital in Baltimore. They discovered that, as they followed them through their entire week, they spent 1 percent of their time eating and going to the restroom. They spent 7 percent of their time actually in contact with a patient and 43 percent of their time with the computer.

Tom:                            Let’s talk about Salud Digna. What about Salud Digna do you consider to be a model for healthcare?

Jud:                              The gentleman who owns SuKarne had a son who was very, very sick. He tried to get his son scheduled for diagnostic testing, and the wait was five months. Fortunately, he had the money necessary to bypass the system, but he thought, “Wait a minute. What’s everybody else going to do? Could I help them?” So, as a philanthropic effort, he started this healthcare delivery system. Fourteen years ago, when his son got sick, there were no resources. This program benefited 6.5 million patients in 2016.

He started by focusing on the things he could impact. He focused on imaging, radiology, laboratory and eyeglasses. He provides eyeglasses for $20, and the bifocals, like I have, would cost $30. I visited their glasses factory, and it would be considered state-of-the-art even for Sydney, Australia, or New York City or Los Angeles. Their laboratory has polymerase chain reaction (PCR) machines so that they can do the most recent state-of-the-art testing for a laboratory in microbiology. And their imaging is second to none. They have the same imaging that we have. In fact, they even have some nicer facilities in mammography. They have complete suites with mood music and visualization areas for the women because this can be a very painful procedure for women. A mammogram is $15. A chest x-ray is $15. An EKG is $10. The most expensive test they have is a CT (or CAT) scan, which is $140. It’s performed with a spiral scanner, which is state-of-the-art anywhere in the world.

Tom:                            I was at a recent conference of medical professionals in Washington, D.C., and the buzz was about how we get the costs of healthcare down in this country. And the numbers you’ve just been citing to me are pretty remarkable. How do they do that?

Jud:                              In SuKarne’s case, it is revenue-neutral now, and that was the goal. The owner of SuKarne partnered with General Electric, Fuji and several other major corporations to get the initial hardware and, subsequently, some of the software. Then, they found price points that allowed them to still pay their employees, provide reasonable salaries for radiologists, obstetricians — for the people who were involved in the system, so that they could keep them in the system without overcharging the patient. There was no profit incentive in the SuKarne model. They got their cost down to about a tenth of what we would pay for the same things here in the United States.

I reviewed another healthcare model that exemplified “salud digna.” Its mantra is the English translation of salud digna, “healthcare with dignity.” It’s called Atlas Medical and was started by Dr. Josh Umbehr in Wichita, Kansas.  It’s a direct-care model, and, basically, you pay him $50 a month for your primary care. If you need an EKG, stitches, a routine physical, if you develop a cough or sore throat — whatever — you just go in and see him. The normal overhead for a physician in the United States is about 50–60 percent. His overhead is 30 percent. Most of his overhead is the cost of medicine because he’s taken the pharmaceutical industry out of the equation — you get your medicine directly from him. A treatment round of penicillin is about $3. A treatment course of antibiotics is $10 or less. They dispense the medication right there during your appointment.

Let’s say you have a sore throat: You call the doctor and get an appointment. Then you get to the doctor and see the receptionist to fill out all the forms. Somebody looks at your throat, maybe not even the doctor, maybe it’s the physician assistant — which is fine because physician extenders are an integral part of medicine at this time. You may get the strep screen. You get a prescription for the antibiotic, if that’s appropriate, and then you take it to the pharmacy and get it filled. You spend a good deal of time in the process, and it’s much more difficult as you get older or if you’re caring for aging parents. Or, let’s say your parents are entering a nursing home. It’s a very difficult undertaking.

With Dr. Umbehr’s model, you call him up. You text him a picture of your throat. He says, “Run by the office and get a strep screen, and if it’s positive, we’ll put you on antibiotics.” You get the antibiotics at the office for less than a couple of dollars. I think the strep screen in his office is $1.43. The appropriate antibiotics are about $4. So, for less than $5, you’ve walked away with appropriate treatment and a good level of care.

The other convenience is that you can call him anytime, 24/7. The maximum number of patients that each primary care doctor has in Atlas Medical is 600, as opposed to 3,000 patients that the primary care physician normally has. They guarantee that you can have up to 30 minutes of their time at any 24-hour period during the day. So, it just makes your doctor accessible. You know exactly what the costs are. You pay $50 a month. Just multiply that times 12 to get whatever it is. Thirty percent of that is overhead. The rest of it is profit. And that profit is paying for his salary, which is about $200,000 a year — more than the average family practice doctor makes, which in that part of the country is about $150,000 a year.

So, everything is very transparent. It’s very open and patient-centered.

There are some other advantages to this, too: Let’s say you’re too sick to go to the doctor, so he comes to you and makes a house call. Well, what about things like stroke or heart attack and you have to go to the hospital? Or your wife is pregnant, or you’re pregnant? What do you do in those situations? Well, you buy insurance on top of this, but you buy it for catastrophic or more substantive, more serious medical problems. So, if you’re pregnant, you go to the obstetrician and the obstetrician manages your pregnancy and delivery, and then Dr. Umbehr takes over your care again at that time.

                                   The way the Kansas system is set up, it costs you about a total of $200 a month per capita for health insurance. So, $150 of that is going to the insurance company and $50 of it is going to Dr. Umbehr. The average per capita around the country is over $600. So you see, there’s a $400 savings per person right there in primary care, which is about 10 percent of the overall medical expense in the United States.

Tom:                            Okay. Absorbing all this and thinking about our present national system, if this is ideal, why isn’t this what we’re doing?

Jud:                              I don’t know. It sounds too good to be true, but it is for real and it works. It’s working very well in Wichita, Kansas. In fact, it’s working so well that some specialty care centers in the Wichita area are adopting a similar direct upfront payment system so that there’s no insurance company, there’s no third party to reject going to the doctor or reject this or reject that. You just go to the doctor and get most problems taken care of and then referred on, if need be, from there. There are some dermatological, orthopedic and cardiology practices that are doing a similar thing as Dr. Umbehr in Wichita. They’ve also negotiated rates down so that they can provide specialty care when needed at a reduced cost.

Another interesting thing is they’re being creative. They’re people on the ground trying to figure it out. They’re not beholden to some huge bureaucracy telling them what to do. For example, when they were figuring out how to handle chest x-rays and they considered their options: “Should we buy an x-ray machine for our office? Then we have to lead line the office. It’s going to be cost-prohibitive. So, what should we do?” Well, they talked to the orthopedic surgeons next door and said, “Hey, can you take our chest x-rays for us?"

They said, “Sure.”

So, a chest x-ray from Dr. Umbehr is $25. For SuKarne in Western Mexico, it’s $15. You can’t get a chest x-ray for under $150 anywhere else in the U.S. that I know of.

Tom:                            What about pharmaceuticals? You mentioned that, basically, they’re cutting out the middleman.

Jud:                              There’s a reason there’s a Rite Aid, CVS or a Walgreens on practically every corner. They make a lot of money.

Tom:                            They do, but those are profound savings we’re talking about.

Jud:                              Yes. They are.

Tom:                            So, the markup, is that incredible on the retail side?

Jud:                              Yes.

Tom:                            I’m dumbfounded, because it seems to me as though we’re just scouring this country for this very idea. Has this concept been presented on a national level? Has it been forwarded to—

Jud:                              It’s gaining an audience.

Tom:                            …policymakers?

Jud:                              Dr. Umbehr has been on “The Sean Hannity Show.” His model, Atlas Medical, has been featured in the Wall Street Journal.

Tom:                            Is it such that it could be compatible with what we have in place already, the Affordable Care Act? Could it be integrated with the Affordable Care Act, or would that have to be completely dismantled and replaced with this kind of system?  

Jud:                              I thought a lot about that. With both the Trump proposal, which is over 10,000 pages — and I don’t pretend to understand or to have read all of it — and with Obamacare — which I don’t pretend to have read or understand either — I’m not taking sides on this political issue. I think with either one — either a federally funded or private insurance, or simply an out-of-pocket payment — the Atlas model and the SuKarne model both work extremely well. With the Atlas model, if someone couldn’t pay, either the government or the insurance company — however they wanted to do it — could pay the $50, and they could integrate into the system. If the person just didn’t want to have the coverage, then they pay out-of-pocket when they need care. The same with the SuKarne model. You just know upfront what you’re going to get and what the costs are.

Tom:                            Well, thank you for laying that out. I think that a lot of people are going to be really interested in hearing about that model, and perhaps another time we can talk about it at more length. I want to make sure that we touch on a few other things in this conversation. One of them being our physician resources. Do we have enough doctors in rural areas in particular?

Jud:                              According to the American Medical Association, by the year 2020, we’re going to be about 100,000 doctors short nationwide — and most of the shortage is in rural primary care.

Tom:                            And why is that?

Jud:                              I don’t, again, pretend to have all the answers. The cost of medical education is astounding right now. The average medical student finishes with $150,000 in debt. The average medical resident, by the time he’s finished his training, is over $250,000 in debt total. That really affects your decision-making process when you’re 30 years old and you’re a quarter of a million dollars in debt and you haven’t earned a penny. It’s kind of a difficult situation.

I think we’ve got to get more people interested in becoming doctors and we’ve got to better utilize our physician extenders, our nurse practitioners and our physician’s assistants in meaningful ways that they can provide good care for our patients.

Tom:                            What significant technology innovations on the delivery side or on the regulatory side do you think could transform the healthcare scene? 

Jud:                              I think the biggest problem facing doctors right now is the shortage and the burnout. To address the burnout, there’s a recent study that shows that half of the internal medicine board-certified doctors are burned out by age 35. The reason they give is, “This isn’t what I signed up for.” There isn’t a doctor-patient relationship. It’s more a doctor-computer, doctor-insurance company, doctor-administration kind of relationship. So, I think anything that will help restore the doctor-patient relationship — which I think is the primary motivation for most people going into medicine — is one thing that really needs to be done.

One of the things that’s also hurting is the amount of regulation on doctors. We’re so heavily regulated by things that we’re supposed to do, that we have to do and dotting I’s and cross T’s. Some of those things are probably worthwhile and probably began with good intentions, but when you start piling them on and they become requirements of practice and requirements for the insurance company to pay, it becomes very, very onerous.     

For example, we changed over to ICD-10, which is a coding mechanism for diagnosis. You now have to code for so many things on ICD-10 that any one mistake could mean no payment, either from the insurance company or from the government. So, you spend so much time with problems like coding that you have to hire somebody to code, to be sure that you get paid, and you find yourself supporting four to six people in an office, which is the average nationwide that a physician supports.

Tom:                            Dr. Jud Chalkley is with St. Joseph Hospital KentuckyOne Health in Lexington. We thank you so much for being with us.

Dr. Jud Chalkley spoke at ONE: The Alltech Ideas Conference (ONE17). To hear more talks from the conference, sign up for the  Alltech Idea Lab. For access, click on the button below.

<>Premium Content
Off
<>Featured Image
Dr. Jud Chalkley: Disrupting the medical hierarchy
<>Date
<>Featured Image License
Off
<>Image Caption
Are there alternative solutions for providing patient-focused, affordable healthcare?
<>Soundcloud
The SoundCloud content at https://soundcloud.com/alltech-1/agfuture-dr-jud-chalkley-disrupting-the-medical-hierarchy is not available, or it is set to private.
<>Hubspot
<!--HubSpot Call-to-Action Code --><span class="hs-cta-wrapper" id="hs-cta-wrapper-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302"><span class="hs-cta-node hs-cta-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" id="hs-cta-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302"><!--[if lte IE 8]><div id="hs-cta-ie-element"></div><![endif]--><a href="https://cta-redirect.hubspot.com/cta/redirect/745395/ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" target="_blank" ><img class="hs-cta-img" id="hs-cta-img-ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302" style="border-width:0px;" src="https://no-cache.hubspot.com/cta/default/745395/ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302.png" alt="Sign up for Alltech Idea Lab"/></a></span><script charset="utf-8" src="https://js.hscta.net/cta/current.js"></script><script type="text/javascript"> hbspt.cta.load(745395, 'ccf8fe0b-a8a5-45a3-9e0d-eefcfd4bf302', {}); </script></span><!-- end HubSpot Call-to-Action Code -->
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Regions
<>Topics
<>Image Caption

Are there alternative solutions for providing patient-focused, affordable healthcare?

From the field: Managing mycotoxins

Submitted by vrobin on Wed, 12/06/2017 - 10:33

It is hard to believe that it is that time of year again: The combines are rolling and farmers across Canada, where I am based, are starting to pack, or have just finished packing, their bunks and silos. To better prepare producers — both livestock and grain farms — for next year’s growing season, I had the chance to discuss managing mycotoxins from the field with Dr. Art Schaafsma, a researcher at the University of Guelph, Ridgetown Campus.

Tell us a little bit about yourself and your work.

My name is Dr. Art Schaafsma, and I am a researcher at the University of Guelph, Ridgetown Campus. I have a Ph.D. in crop protection and have been involved with field crop pest management at Ridgetown for just over 30 years. My main area of emphasis and research has been mycotoxins in both corn and wheat. I look at agronomic practices, sampling, detection and how to deal with mycotoxins along the value chain.

Is there a way to mitigate the risk of mycotoxins from the field, whether during planting, growing or harvesting? If so, how?

Mycotoxins are really complicated to manage, and it takes a multi-faceted approach and several tools to address them.

The typical rotation after wheat is corn, and wheat does not seem to be as large a source of inoculum as corn is. This is seen often in minimum till and no-till systems, as there is a lot of corn residue left.

Some pork producers use wheat as a way to manage mycotoxins. They will grow both corn and wheat and hope that one of those crops is clean and mix them if one is not as clean. They prefer corn, but if it is a bad year, then they will sell the wheat.

Also, pay attention to hybrid selection and look for hybrids that are less susceptible to mycotoxins. You want to look for a hybrid that will mature on time, because if you push the hybrid, you can increase the risk of mycotoxins forming. In wheat, it is much the same when it comes to variety selection.

During flowering in both corn and wheat is when the crop is most susceptible to the fungi that produce mycotoxins. In order to help combat this, producers should use a fungicide spray. The only group that is available are the triazoles to control Fusarium on both corn and wheat, and it is very important to get the timing right and get good coverage.

In corn, it is important to control western bean cutworm and other pests that can contribute to furthering the risk of mycotoxin contamination.

When it comes to harvest, some producers have started to take their wheat or corn off as soon as it can be taken off so that they can then dry it. This helps because they can control how fast the grain dries to stop the infection.

During the growing season, what are some visible signs of mycotoxin contamination?

In wheat, it is a bit easier to see the signs of deoxynivalenol (DON) because you look for head blight symptoms. These symptoms include the spikelets looking bleached. In corn, however, it is a bit more difficult, because there are a number of different species of Fusarium, and a lot don’t produce mycotoxins.

The main mycotoxin we deal with is DON. You can tell if you have DON if you have white mold accompanied by a purple or pink color anywhere on the cob. It is always better to test the grain, especially if you see any pink or purple color or white mold. Green molds and black molds are not associated with mycotoxins.

Many people worry about toxins increasing during storage; however, DON won’t increase if corn is stored below 18 percent moisture. However, this is when the mycotoxin zearalenone can be produced. Zearalenone is a late-season toxin, and there is an increased risk of zearalenone if the crop is late to harvest, stored incorrectly or not dried quickly enough. DON needs warm conditions to keep growing.  Zearalenone can form under cooler and damper conditions.

Are there certain types of mycotoxins that become more prevalent based on the type of growing season? For example, if it is a very wet year, do you see more DON versus in a dry year?

Depending on the type of year you may be experiencing, you could get different types of mycotoxins contaminating your corn or wheat. For example, DON forms in a moderately warm temperature, with its optimum temperature being 28 degrees Celsius, and if there is a lot of rain, DON can become a big issue. Also, in August, when we sometimes get the foggy mornings and then the rest of the day is warm, DON can be an issue.

DON is a complicated type of toxin and has several forms.  Most producers tend to use an ELISA test to test for DON in their crops, but it only measures a few forms of DON, not all its forms.  The other forms are just as toxic as DON.  DON can sometimes also be masked or hidden. This happens when DON is conjugated with a sugar and is then overlooked by an ELISA test. This is why sometimes you may run an ELISA test, think there are no problems, then discover a mycotoxin.

Fumonisin, another type of mycotoxin, shows up when there is heat stress, with low- to mid-30s degree Celsius weather and drought. In Ontario, we do not get this one too much because it isn’t hot and dry enough.

Zearalenone does not show up in wheat because it is too warm during flowering, as wheat heads out in June or July. However, it does show up in corn in the fall.

One toxin producers should be aware of is T-2 toxin. T-2 is related to a late harvest, and we find it regularly in corn that is left in the field too long and when corn lodges. The danger with this one is that it is 10 times more toxic than DON.

Where do you think the next advancements will come from in reducing/protecting against Fusarium-produced mycotoxins?

In corn, we are working on a sustainable way to manage western bean cutworm. I would like for there to be an incentive for farmers to grow less susceptible hybrids. This may happen soon because other end markets that buy a lot of corn are getting frustrated by mycotoxins as well. It is not just livestock producers that should be looking at their corn this way. More often now, there is a penalty applied for how much DON is brought into the processing plant. Awareness is growing and will lead us to change.

In wheat, the industry continues to improve the genetics. There is more progress in managing mycotoxins in wheat than in corn. We can manage it reasonably well in wheat. 

 

 

Have a question or comment?

<>Premium Content
Off
<>Featured Image
"Mycotoxins are really complicated to manage, and it takes a multi-faceted approach and several tools to address them." — Dr. Art Schaafsma on managing mycotoxins in corn and wheat.
<>Date
<>Featured Image License
Off
<>Hubspot
<div>&nbsp;</div>
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: 'd2b1a74a-d16c-4ea9-b2fd-b17b4c1cfc91'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Crop Science Focus Areas
<>Article Type
<>Regions
<>Topics
<>Programs and Services
<>Image Caption

<p></p>

Farming the future: What's on the horizon?

Submitted by eivantsova on Fri, 12/01/2017 - 14:13

The following is an edited transcript of Tom Martin’s discussion with a panel of experts on the future of farming. Click below to hear the full discussion:

Tom:                I'm Tom Martin, and with us to share their perspectives on what the future holds for agriculture and food production and consumption are Dr. Karl Dawson, vice president and chief scientific officer at Alltech — Dr. Dawson directs activities at the company's bioscience centers around the world — and Dr. Michael Boehlje, who will be joining us shortly. Dr. Boehlje is a distinguished professor of agricultural economics at Purdue University, where he conducts research and teaches in the areas of farm and agribusiness management and finance.

                        Mary Shelman is also with us. Mary is former director of Harvard Business School's Agribusiness Program and an internationally recognized thought leader on the future of the global agrifood industry. And Aidan Connolly, chief innovation officer and vice president of corporate accounts at Alltech. Aidan has been with Alltech for 25 years. I appreciate you all joining us this morning.

                        I'm going to pose questions to each of you. Once you've offered your views, your fellow panelists will have an opportunity to comment on those views. But let's begin with a very broad, very big question that could itself consume an hour — we also have some questions that have come in from media, and we'll try to get them in as well.

 Beginning with you, Dr. Dawson, are you optimistic about the future of farming, and if so, why?

Karl:                 You know, it depends a little bit on what you call “farming” right now and the definition of farming, but I would say that I'm not very optimistic if we continue thinking about farming as we did a decade ago — as a typical family farm. The farm has changed a lot, and it's undergoing a revolution — or evolution — with more technology being in the farm, all the time.

                        To put this into context, I was thinking about a visit I had with my nephew, who runs a farm in northern Montana. He and his neighbors think about farming, using agricultural units, as thousands of acres. That acreage was inconceivable many years ago. We never even thought about using that much land or that many resources, so it's changed considerably.

Even just two decades ago, a 100-acre farm was considered a large farm. These farmers are ready to move to the next level and quadruple in size in the next five years. That's their goal. When they do that, they need the support of technology. 

Even just two decades ago, a 100-acre farm was considered a large farm. These farmers are ready to move to the next level and quadruple in size in the next five years. That's their goal. When they do that, they need the support of technology. Whether it's data from the machines they drive, the harvest or crop materials, the seed stock used for animals or in plants — that support has to come from technology. Farmers are really a technology group now.

Tom:                Mary Shelman, are you optimistic, otherwise?

Mary:              I have to be optimistic. As a farm owner in Kentucky, I have to be optimistic about the future. I do think it's actually a great time. I'm a little more optimistic than Karl. It’s not just about the scale that we can achieve — and a lot of that through technology — it’s also about the ability to achieve more differentiations, to be able to address more consumer needs, and we see now that there are louder voices impacting the food system.

  But if I look around the world — and we go back to those tremendous figures that the Food and Agriculture Organization (FAO) provides regarding the change in population and income growth —  with the demand for agricultural products, the output of farms is only going to increase and will increase by maybe 60 percent or 70 percent in the next 35 years. That's a great time and a great need that needs to be fulfilled, and I completely agree with Karl that technology will help us do that.

 On the other hand, I do think there's this issue of economic viability that we also need to be aware of: the dynamics of how pricing works at the farm level — the typical supply-and-demand economics — those don't tend to move in lockstep. At times — for example, crop farming in the U.S. today — prices are relatively low compared to other times within the last five years. So, we need to maintain that economic viability for farmers to survive and, in particular, to attract new, younger farmers to the system. As we all know, the average age of farmers in the U.S. is increasing. We're approaching the 60-year-old mark. We need new talent, and they will only come in if there are attractive returns in the agriculture sector.

Tom:                Aidan Connolly, you work within the areas of innovation and ideas. What do you see in the future?

Aidan:              I have the chance to meet the United Nations FAO group every year, and they, of course, have been quite pessimistic about the future of agriculture. We consider the numbers that Mary mentioned of 70 percent increase in food production over the next 35 years, but if you actually compound that out, Tom, you're really only looking at a figure of 1.7 percent improvement in productivity per year — and agriculture has actually exceeded that. I would be extremely optimistic about our potential for increasing and improving the amount of food we produce. I think farming is going to be very much part of feeding this population we've spoken about by 2050.

 When you look at the gaps we have from the nutritional perspective in feeding animals, nutritional perspective in feeding crops — these factors that are holding back agriculture — productivity losses, the amount of food that we lose, the amount of fertilizer we waste and where food is lost, even within the food chain. I would be extremely optimistic about our potential for increasing and improving the amount of food we produce. I think farming is going to be very much part of feeding this population we've spoken about by 2050.

Tom:                Okay, let's move into our questions and we'll begin with Mary Shelman. Consumers are being described as millennials, “prosumers” and “super consumers.” Do you think we're facing fundamentally new groups of consumers, and do you think this reflects a real change in the marketplace? And, if so, what are their needs?

Mary:              Tom, I do think we are facing a fundamental change. We're in the midst of a fundamental change, and that's a very good thing, and I think it's very positive for the food industry and the ag industry. I think people overall — not just millennials — are asking more questions about where their food comes from and how it's produced. And it's not just in the U.S. or in first world countries. This is true around the world in areas, whether it's driven by food safety or whether it's driven by greater awareness because technology — the new digital media — has made information so available. So, I do think we're in the middle of a food movement. I think that this idea of engaged eating is a really attractive thought to get your arms around. A big piece of that, though, is this new millennial consumer that we talk about.

Tom:                What is that?

Mary:              “Engaged eating” is this idea that someone born between 1980 and 2000 has grown up at a time when technology is all around them — they get information in different ways, they have different values, they've grown up being fed products like Annie's Organic Mac & Cheese compared to Kraft. And now this group — the biggest demographic group with 83 million in the U.S. compared to 75 million baby boomers — are at the stage of having families and moving up in their income potential. So, they are very attractive to the food industry.

                        First, millennials have a much greater understanding of the link between what they eat and their health, and that's a very positive change. The second thing is that what they eat is part of their identity. It actually reflects who they are as a person. They enjoy taking pictures of their food and posting them on Instagram, sharing a meal with their friends and going out and seeking information about food in different ways — not just from mom or from an advertisement.

...not only do consumers want products that meet a certain price point and a certain safety point, they want products that have a purpose.

                        Food also reflects our values. This is the thing that perhaps poses the biggest challenge to the traditional food industry because not only do consumers want products that meet a certain price point and a certain safety point, they want products that have a purpose. They want products from an industry that has the same values that they do, and they're often willing to pay more for these products. As a matter of fact, I was at a meeting last week in New Zealand, and someone was presenting the results of a worldwide survey that was asking this millennial group how they thought they had more influence and whether it was through their vote for a political candidate. They say, “No, it's our vote with our dollars.” So, millennials believe that they “vote” for these types of products, and they’re willing to pay for this.

                        We’re actually at a time that there's kind of a bifurcation in the food system. The majority of consumers need safe, affordable food and accessible food, but yet this group that's a premium category is really growing in their needs and growing in their demands, and they like the stories, they want transparency, they need traceability. I think that’s putting a very interesting twist on the system right now.

Tom:                Aidan, any thoughts on this?

Aidan:              I would say that, as a father of two millennials, I question whether millennials are really that much different than prior generations. They are compared to the immediate generation before them. We consider whether their values and their beliefs are similar to those that we saw in people from the 1950s and 1960s, who were also very aspirational in changing the world.  “Prosumer” is a word I like a lot because I think it grasps a little bit more the fact that they're people proactively making food choices based on their ethics and their desires, what they believe and what they would like to support. And that part, Mary, I think, has been described extremely clearly. That is definitely something that we have not seen before. We certainly haven't seen in the last 20 or 30 years. We provide food which is affordable, which is available, which is safe. Consumers or prosumers are looking for something more, and that's a fundamental change in our food system.

Tom:                Dr. Dawson, do you want to add anything? I don't want to exclude anybody here.

Karl:                 I agree with the comments that have come out. I think you are looking at a different marketplace, and I think that that's something that will drive the overall agricultural system completely. So, as time goes on, it will be interesting how that evolves, but I think it's going to be a simple adjustment in the way markets look at the consumer.

Tom:                Okay, Dr. Dawson, next question is for you and Mary, if you would respond. It appears that nutrition has not changed for decades, and we may be at the limits of what we can do given the ways in which nutrition is researched. Are there new tools that allow farmers to understand better how to feed their animals and be more precise in nutrition?

Karl:                 Absolutely, there are new tools, but I guess I would take a little bit of a different view on this. I really don't see that nutrition has been a stagnant science over the last two decades, or even the last century. We've had a lot of advancements that have really been responsible for a lot of the changes in livestock production we've seen. Particularly in underdeveloped countries, we're using lots of new technology with amino acid balances. Nutrient balances are new things that have come out of that.From our point of view, working at the very molecular level, we can see what effect food and food ingredients have on the basic physiology of an animal by looking at gene expression.

 But we do have a lot of new tools that are coming out that are really going to change the way we've looked at this. Some of this comes from the ability to collect data and process that data, to integrate it into a very precise model. We've never had the capability to do that before. From our point of view, working at the very molecular level, we can see what effect food and food ingredients have on the basic physiology of an animal by looking at gene expression. This is a new tool that's progressing. We could probably talk a lot about this, but it's a very precise tool that tells you exactly what's happening and it has really allowed us to uncover a lot of the “hidden secrets” with nutrition.

So, as those new tools are becoming available, they’re going to allow for diagnostic tests. They're going to look at new ways of managing and looking at the way we train our animals to eat.

Tom:                There are many tangential areas we could go off to here, and we're only two questions into this conversation. But let's go off on one: big data, because we know that it's having an overwhelming impact and is something of a latecomer to the agricultural world. Does anybody want to offer some thoughts on how big data is changing things and what the future holds in that area?

Karl:                 I would start off by saying you have a tool here to take millions and billions of observations, whether it's productivity, food intake, the way we grow our crops, how much rain we get — all of this can be integrated into very precise models, and that's going to be the big change in agriculture. If you would like, we're talking about moving to “armchair” farming. We're going to be making our decisions while sitting in front of the computer, looking to see what we can predict in the future. That's a tremendous tool we've never had before.

Big data — whether it be used in terms of diseases, performance of animals or crops, or whether it be used in the realms of a lot of these sensors and new digital technologies — can capture a lot of information we've never been able to capture before.

Aidan:              I think, in particular, we've seen some of the bigger questions such as food safety — something which is extremely difficult to measure on-farm — and what can influence it, what causes it to increase or decrease. We at Alltech have been working with other programs where big data allows us to capture the factors that we have underlined — why that occurs — which we've never been able to analyze before.

 We're starting to understand things in a very fundamental way, and I think that big data — whether it be used in terms of diseases, performance of animals or crops, or whether it be used in the realms of a lot of these sensors and new digital technologies — can capture a lot of information we've never been able to capture before. We can now interpret that information because we're able to use larger algorithms, larger systems to be able to understand what exactly we're looking at.

Michael:          Okay, sorry for the problems here in terms of getting engaged, but I'm here now. To comment on big data: It seems to me that, specifically, we have had significant advances in this area, and the advances may be as much along the entire value chain as they are at the production sector. In fact, the production sector may be lacking and just starting to catch up. The whole issue of the opportunity we have here, in terms of both capturing the payoff of big data not only at the farm production level but also throughout the entire value chain, is really critical. We can now accurately receive the message from consumers of what they want in terms of physical characteristics of their food or their eating experiences and also get more feedback in terms of those credence attributes, which are really important but difficult to measure. Now we can get them more accurately with traceability through that value chain. So, that’s a big advancement.

Tom:                Okay. Thank you for joining us, Dr. Boehlje. Let's dig a little more deeply into technology and the next question is for you, Aidan and Dr. Dawson. Let's look at the range of primary technologies that are transforming agriculture beyond big data. What else is happening out there?

Aidan:              There's an awful lot happening, and it's very hard, I think, for somebody to capture the degree of change which is occurring. I think if anybody thinks that agriculture is going to be the same way in 20 to 30 years' time, they've got their head in sand. We've written a certain number of papers on the digital technologies and the rate that digital technologies are transforming agriculture at the moment. This includes robots, drones, blockchain, the internet of things, virtual reality and enhanced reality. These are technologies which, either from a hardware or software perspective, can fundamentally change the ways in which we understand what happens when we grow plants or grow animals.

There are other technologies, such as nutrigenomics. That's one that Alltech is invested in very heavily. We're the only ones in animal agriculture to do so. We are big believers that understanding how nutrients impact gene expression in animals and in organisms is going to be very important for maximizing their productivity. I wouldn't forget gene editing, either. This is an area — described as CRISPR — that is dramatically transforming what we can do, again, with the ability of plants and animals to resist disease, enhance productivity, achieve certain characteristics we're looking at from the food perspective.

I don't know how to capture it all in such a short way, Tom, but I'd certainly say the digital technologies, nutrigenomics and gene editing are the three major areas that are going to transform the way we think about how food is produced.

Tom:                Karl Dawson, anything to add to that?

There are things that are happening in the area of biochemistry — findings that are really changing the way we think about processing feeds, handling feeds, the way we think about using feed additives. 

Karl:                 I think I'd add a few other things: There are things that are happening in the area of biochemistry — findings that are really changing the way we think about processing feeds, handling feeds, the way we think about using feed additives. All of those are coming from very basic biochemical evaluation of what's going on in the animal systems and the way they eat. We're doing the same thing in plants today.

                        One of the things that comes up when you start thinking a little bit about this is that we always think about what we're going to do on the nutrition side and how we're going to change the nutrition. We can do that, and we're starting to home in on the gap between genetic potential and what the animal can do.

  The other side of that issue that comes up is that we can start thinking about selecting our animals for specific nutrition. We talked a little bit about gene editing and the capabilities there. We have the capability of doing that and changing what those animals look like coming into the system, and we have the same capability on the plant side. That’s a very important thought process to keep in mind: that those two things are going to come together someday, and we have to be able to go forward with those in the future.

Tom:                Okay, an open question to all of you: This comes to us form Irish Farmers Monthly, and it dovetails nicely with what you've just been talking about. From both the environmental and the productivity perspectives, how important will electric and autonomous vehicles be on the future farm? Will such machinery become more important in light of the increased need for sustainability as the world population increases? Any thoughts?

Aidan:              Look, we're facing a world where we're talking about having planes fly themselves, cars drive themselves. It's perfectly logical that we would see the same thing on the farm. And anybody who's seen some of the injuries that can occur on a tractor and cause somebody to lose an arm or a limb understands that there are all sorts of safety issues that could be addressed by no longer having the potential for operator error.

                        From my perspective, I think it is difficult to find labor on-farm. When you find labor, you want labor to be well-trained and well-prepared. You have safety opportunities, also. I think there's just going to be a lot of factors that are going to drive for these autonomously driven tractors and harvesters to become part of our future.

Automation and robotics are going to be, I think, much more common and more rapidly adopted than many people think.

Michael:          Automation and robotics are going to be, I think, much more common and more rapidly adopted than many people think. We have a debate here on the Purdue campus of how quickly we're going to see those happening in the field. The discussion is related to whether it's going to be five years or 10 years before we're going to see an adoption of automated tractors and other systems within crop production agriculture. We already see it in the dairy industry in terms of robotic milking. We're seeing it happen particularly in terms of harvesting, especially crops. It’s going to happen much more rapidly than we realize, and it has the opportunity to profoundly change the agricultural sector. It’s a really, really important development.

Tom:                Anybody else?

Karl:                 I think that's true, and, quite frankly, it's not that far off. Some of it is already here. I've been on combines that essentially drive themselves down the row. You need a driver there to turn the combine around, but in the big fields, these 18-, 19-, 20-foot stalls can be driving themselves, and they're controlled by GPS. It's amazing to see how little manpower it really takes to run those.

Michael:          And now they’re able to turn themselves around. So that's even changed.

Karl:                 They didn't the day I was there.

Michael:          Oh, I understand, but that's how fast this technology is coming. It's coming very rapidly. My belief is we'll see this in the fields in five years — not 10 years — and rapidly adopted.

Tom:                Aidan?

Aidan:              I was just going to say I was with an ag-tech startup that obviously made too much money because the owner had just bought himself a Tesla. He just took his hands off the steering wheel and let the car drive itself, which gave me a little bit of heart palpitations as I watched it maneuvering its way through the city. But it shows you what's possible. In the fields, we've got a much more controlled environment — we have much less risk of things such as car doors opening or bicycles. It’s an inevitable part of our future, and we have the perfect opportunity to use this technology.

Mary:              I just want to add an even finer detail around it: What happens when we get in the field and we have the sensors on and the sprayers operating and you're actually sensing which weed to spray or which bloom doesn't have enough pollen on it so you can provide supplemental pollination? We have this micro-level influence. Technology can help us get closer to achieving that potential.

Tom:                We're talking about 9 billion people by 2050. Do these innovations get us to where we need to go to be able to feed the world?

The technology is developing fast and it will continue to keep up with the demand for the foreseeable future.

Karl:                 I think there's no doubt about that. I think the technology is developing fast and it will continue to keep up with the demand for the foreseeable future.

Aidan:              I had the opportunity to talk to a cooperative this week that was asking for some ideas about 2050, and I said that 2050, for me, has become unimaginable in terms of what could potentially happen. I often wonder whether 2050 is the right number to use. Maybe we should just be focusing, as Dr. Boehlje mentioned, on the next five to 10 years, where we can concretely comprehend what will change. But if you say the number is 9 billion and Mary says the number is 10 billion and somebody else says, “Well, what happens if we start being capable of changing life itself and really extending life spans?” maybe the number we're looking at is 15 billion. Maybe we're looking at a much greater number of people that we're going to have to feed.

                        I think we need to be really cognizant of the fact that this technological thing is moving so quickly. Don't stretch yourself too far in predicting. Look concretely at what should be used and how it should be used in the foreseeable future, which is probably more like 10 years than 35 years.

Tom:                These things are changing so much more rapidly these days. You mentioned nutrigenomics earlier, and I wanted to touch on that with Dr. Dawson. What are the main benefits that you see from a nutrigenomics perspective for farmers, and how will that change the way that they farm?

Karl:                 Well, if you think we're going to have a diagnostic kit tomorrow that solves all the nutritional problem of animals, nutrigenomics isn't going to deliver that right now. However, it is redefining nutrition. When we think about the value weight of feed material or feed product, the supplementation strategy, management practices, the way we feed calves or young chickens — all of those things are starting to change now because we have a tool that allows us to actually measure what happens when we make a nutritional change. That's a very powerful thing, and it's not only allowing us to look at productivity. We can now measure immunity in a bird and change that by nutritionally altering the young chick's diet. Same thing with calves: We can pass material information from one generation to the next using a nutritional strategy, but we can actually measure that and see how it's done.

Nutrigenomics is really going to redefine things. It's already redefined mineral nutrition. Trace mineral nutrition will never be the same...

                        Nutrigenomics is really going to redefine things. It's already redefined mineral nutrition. Trace mineral nutrition will never be the same as we view it from now on. We know that we can use less minerals. We can change and have less impact on the environment by using these tools. This tool allowed us to very rapidly understand that and change our nutritional practices.

Tom:                Dr. Boehlje, I want to give you an opportunity to jump in here.

Michael:          Let me just comment quickly. I'm not a scientist at the same level as Dr. Dawson, so I don't have that understanding at a granular level. But, we sometimes describe the technologies as moving agriculture from “growing stuff” to biological manufacturing. This biological manufacturing is very much in the context of what we've already been talking about: it's understanding the science and nutrigenomics. It's understanding biotechnologies and everything that has the potential to significantly impact the growth process of plants and animals at a much more scientific level. We’re getting sciences and technologies that are developing because of the interconnectivity between science bases previously kept in silos: nutrition, nutrigenomics and biology. We see some universities that have said, just as an illustration, that science is not only important, but is also essential. In fact, the required science increasingly in many universities is you have to take biology. You have to take biology to get an understanding because biology is increasingly driving the world.

Mary:              You know, can I come back to that, Mike? I agree with you and Dr. Dawson that science and nutrigenomics is giving us amazing tools. But, Mike, you used that term “biological manufacturing,” and I put on my consumer hat, and I just think that that's a terrible term. Today’s consumers don't want their food manufactured in any kind of factory, and that's just kind of the picture that comes to mind (with the term “biological manufacturing”). We were talking about how we can be more responsive to consumers, have differentiation, we can give this credence attributes, yet you're proposing or using this term that's actually far from that.

Michael:          I understand your perspective and I absolutely agree with that perspective. We aren't going to promote or advertise, we're not going to be saying to consumers, “This is a biological manufacturing process.” In fact, the word “processing,” generally, is not something consumers really want to hear relative to food.

It's interesting, though, that consumers are more than happy to hear the term “processing” relative to health issues or other things they buy, but they really are, in many cases, very negative about the term as it relates to food.

                        I'm not going to promote “biological manufacturing” to consumers, but it’s certainly a concept we in the industry, at the production level, must be increasingly mindful of. This allows us to adopt and facilitate the process of growing and producing food more scientifically and better than we have in the past.

Tom:                Dr. Boehlje, a topic that we were discussing before you were able to join us is big data — or farming data — in the future. Actually, it's happening now. How does that affect the types of people who will choose farming as a profession in the future? Do you think it will change the attractiveness of agriculture in some way?

Michael:          I think that, increasingly, what we're going to find in this industry is that those people who are going to be successful have some skills that maybe they need to enhance to be successful. Particularly, what we're interested in is analytical skills — analytical skills that are tied to data and information.

                        We see this particularly in the financial area, which is the area I work in. Some farmers abhor recordkeeping. They abhor this idea of having to keep financial information to provide to their lender, to understand their own business, to get the financial performance assessment that they need. We need to, increasingly, develop that skill and feel comfortable with that skill of looking at numbers, looking at information, trying to understand what the numbers say and the story they tell — not just crunching those numbers. Data assessment, data summarization, data visualization — those are going to be skills that we need to have more and more of our producers understand, and they will be the skills that might be very important differentiators.

                        And it's not just the stories that we need to have in terms of average yields. We see that, as we go across the fields with our yield monitors today, it's the distributions that count. It's what happens when you are in parts of that field where you have low yields as a function of a number of things that happened — whether they be weather or whether they be agronomic-oriented — and where you get those high yields as well. The same is true with animals. We're starting to see different animal performance even in the same pen in the same group as a function of their genetics, as a function of a number of things. We're going to get more granular in the data, and we need to understand the story there.

                        Data assessment, data summarization, data visualization — those are going to be skills that we need to have more and more of our producers understand, and they will be the skills that might be very important differentiators. Certainly, strategic thinking is another one of those skills, risk assessment, a lot of other skills. But the one specifically related to big data is this willingness to work with data and understand "the story" it tells.

Tom:                Aidan, do you have thoughts on that?

Aidan:              Yes, from a historical perspective, I think of what our system was for deciding who would become farmers. I suppose, originally, everyone is a farmer, and then gradually we decided that there would be land and that land would be passed from a farm owner to their eldest son. And over time, then, it seems, — at least in Ireland — it was divided amongst as many children as you had. Each one got a parcel of land, which created its own issues. Gradually, we seem to have moved toward a system where those who don't want to stay on the land go to cities or go and find other jobs, and we've been left with the people who really want to be farmers. Only in the last 20 or 30 years did we start to understand that being a farmer involves education as well. So, obviously, all the educational systems were set up through land grants and other systems around the world to try to create farming as a profession.

                        I think what we're looking at now is a fundamental change in what that farmer will look like. They won't necessarily grow up on a farm. They might grow up in the city. They won't necessarily have the skills of understanding animals or understanding plants. They'll understand data, they'll understand analytics, equipment, decision-making between all the various technologies, and what they should buy and what they shouldn't invest in.

 I think what we're looking at now is a fundamental change in what that farmer will look like.

                        So, those are dramatically different skills and skills that were used for the last, I'd say, thousand years — you might say a hundred years — to select or to decide who is it that's a farmer, who is not a farmer, and that's very fundamental. And back to the same numbers we're talking about, I think those influence not who is going to be a farmer in 10 or 20 or 30 years' time. Probably even in the next five years, we're going to see dramatic differences in terms of who are the right people, who are the successful people who are going to take over stewardship of the land.

Tom:                It seems to have broad implications for the entire culture. Are we talking about these attributes appearing mostly in large farming operations, or all the way down the chain to small family farmers?

Mary:              I think they have to go all the way down to small family farmers. I would come back to this and say to both of you, to Mike and to Aidan, that you gave a great description. I agree completely. It's about understanding the data to use the data. But, again, what's missing is the typical production push, and we now have consumers controlling more of the acres.

It’s not just about producing at the lowest price, but producing what the market wants...

                        I would add to this list — and this is whether it's maybe more appropriate even for a small family farmer or the new generation that is very attracted to farming for different reasons — is being able to understand the market. It's about being able to understand how to deliver this differentiated product that has extra value. It’s not just about producing at the lowest price, but producing what the market wants — or different segments that the market wants — and being able to sell into those channels, connect with those channels.

                        This is a very big basket now — a very big ask — which is a great thing for family farming enterprises because, typically, you don't have just one person doing all the decision-making — you have a whole set of people. The whole family is around the table, and it's the husband and the spouse, even the children as they come into the family business. I see these enterprises, and they have different specializations within, and that's fantastic because everybody can bring their strength to the table.

Michael:          Let me just completely agree with what Mary said. That's a really important issue. We have a tendency in agriculture to talk about supply chains. That's true in almost all industries and is reflective of the “push” mentality that we've had in a lot of industries, including agriculture: how we're pushing through the supply chain to the consumer. Increasingly, we're talking about “chain reversal,” and that's the whole idea: demand-driven change. We have consumers increasingly telling the entire chain what they want, how they want it and how it ought to be done.

 An important skill that's going to be much more important for farmers is going to be this whole idea of understanding and a willingness to work in an interdependent system — rather than being independent — and be very focused on relationships, collaboration and interpersonal skills. Those are things that many farmers haven’t historically — if I take my own father, for example — liked to do. He wanted to be in his farming operation. He didn't want to do farm records, and he didn't want to have a whole lot of relationships with other people. And, increasingly, those skills will be essential to be a successful farmer in the future.

Tom:                I have a question here from media that I think is appropriate at the moment. Let's just open it up for everybody. I think each of you can bring a perspective to this. This is from Owen Roberts. He's with the University of Guelph and is president of the International Federation of Agricultural Journalists, and he asks a very appropriate question because of what happened yesterday in Switzerland — the country renowned for its food supply. They held a national referendum yesterday designed to anchor food security in their constitution. It initially won approval by about 77 percent of the electorate. Globally, this was quite a groundbreaking exercise on their part, reflecting the growing interest by people everywhere in the production of the foods they consume, as you mentioned, Mary. He asks that we touch on some reasons why precision nutrition can give them confidence about the future of food supply and how they get that message to consuming public. If you'd like to begin with that, Mary?

Do we have the water? Do we have the land? How is climate variability affecting things? This precision nutrition piece is an important data tool that will enable us to do as much as we can with the resources that we have.

Mary:              Wow, that's a tough one. I think this issue about food security is really important for everybody in the world, right? And you're talking about Switzerland here. The challenge is that in some countries you don't have the resources to do that. I don't know enough about this referendum or the backend pieces of it. But, I'd say that precision nutrition will be incredibly important to meet this global demand. At the country level — we have talked so much about the fact that we can enhance productivity, but we have to do it in a time of decreasing resources, decreasing natural resources. Do we have the water? Do we have the land? How is climate variability affecting things? This precision nutrition piece is an important data tool that will enable us to do as much as we can with the resources that we have. I think country by country you're not going to get the same answer.

Tom:                Wheels are turning here, I guess.

Aidan:              I think that we talk all the time about the need for countries to produce all of their own food, and in essence, that sounds like motherhood and apple pie — you have to agree with it. I don't feel that old, but I can remember days, or growing up, when there weren't oranges in the supermarket, when you couldn't find bananas all year round, when things were much more seasonal. We've all gotten used to the idea that there's an abundance of food. It's available relatively inexpensively. Its carbon footprint, even if it comes from Colombia or Kenya, is actually quite low because the systems of distribution have become extremely efficient. I'll even look at countries like China that want to be sufficient in food yet increasingly are consuming corn from Brazil and soybeans from the United States, and they are purchasing pork and chicken. These are countries that have said they want to produce everything themselves. It's clear that that isn't always that easy.

..the fact is that we have this increasingly interconnected global system, and consumers have an expectation of being able to have food available at a relatively cheap cost and all the foods they want all year round.

                        Mary and I have had this debate in the past about people storing food in cans in their houses. Is that what we should be doing? We imagine people would start to do that again. I struggle with that idea. I think the world has become increasingly global. It requires, of course, free trade and requires us to trust that other countries won't declare war on us — which maybe is a big thing to wonder about. But the fact is that we have this increasingly interconnected global system, and consumers have an expectation of being able to have food available at a relatively cheap cost and all the foods they want all year round.

Tom:                Dr. Dawson, do you have thoughts on this?

Karl:                 I agree with the direction that Aidan is going, but the important things that are coming out today with agriculture boil down, oftentimes, to resource limitations — what do we have to work with? Whether it be the environment, land, water — those are the things that are going to drive the way we look at efficiency as we move forward. I don't know the initiative that they're talking about in Europe, but the idea that these are things that we can control right now is probably not right. We're going to have a limited amount of resources.

I look at an area where I grew up in southwest Montana. At one time, people died over water rights. For many years, it hasn't been that way, but I received something in the mail the other day that said I had to declare my water rights again on the property that I own there with the idea that that's going to go away pretty soon. It's going to be legislated. Maybe there are some security issues there we need to look at. One of the reasons that it's bad there is mining, which uses a lot of water, but the fact is that it's going to happen around the world. So, security does need to be legislated to some extent.

Tom:                Dr. Boehlje, thoughts on food security?

It’s not just our ability to produce enough to have "food security." It's also our ability to protect the amount of production we get and make sure that it actually gets to consumers and, as a matter of fact, to be more efficient and effective in terms of consuming it...

Michael:          Yes, I think the other dimension here is what kind of losses we have in the food chain, particularly in different economies in different countries. It’s not just our ability to produce enough to have "food security." It's also our ability to protect the amount of production we get and make sure that it actually gets to consumers and, as a matter of fact, to be more efficient and effective in terms of consuming it and not having such waste as we frequently have, particularly in the developed countries and developed world.

                        This whole issue of trying to reduce the amount of losses — the wastage — the amount impacted by storage losses, waste in the field, by not getting harvested adequately, by not getting transported adequately — particularly in many countries in the developing world. At the same time, in countries like the U.S., we have a lot of food wastage that occurs just out of our own refrigerators, out of our own food systems, where we buy food products, we don't consume them, we don't take care of them, we don't refrigerate them — and if we do refrigerate them, we lose track of them — we throw it out the back of the restaurant, we may try to donate it, but sometimes it's already expired in terms of its ability to be able to be consumed. There's a lot of waste in the system, and there actually are some major initiatives underway on the part of both corporate and university organizations to try to reduce the losses in the food chain, and that's an important part of this discussion.

Tom:                Dr. Boehlje, I want to stay with you for this next question, and Mary, if you would consider this as well: Economically, the U.S. has been the best place to farm, as you have written, based on its strong infrastructure and on its open markets. Do you think that that will continue to be the case in the future or should farmers be seeking new places to conduct business?

Michael:          We already see that occurring. We have significant expansion of production in agriculture, as everyone knows, in South America, Brazil, Argentina being particularly the case — significant expansion of agricultural production in Ukraine, and they are major competitors now to the U.S. We see it occurring in China, we see it occurring in Africa. So, we do see opportunities much more broadly in terms of farming than we used to. I can name a farming family here who has both a U.S. operation and a Brazilian operation. I actually know three families that have that kind of situation.

So, we are expanding agricultural production more globally. If you go back 30 years or longer, a crew chef from the former Soviet Union came to the U.S. to buy wheat to feed his people. Here we are in the middle of a cold war and he comes to the U.S. — his archenemy — to buy food. This has to be the ultimate indication of the failure of the system. Why did he come to the U.S.? Well, in a way, we were the only store in town. We were the only place where you had the opportunity to get the amount of wheat that he needed to feed his people. Now you can get that in a much broader base of geographies, in addition to corn, soybeans and other products.

 Now, the interesting dimension is that we're going to see farmers who are more geographically diversified in their production systems. We already see it in the specialty crops, where farmers in California have Mexican production as well because they can't grow what they need there. We see it happening in terms of other parts of the U.S., where farmers are in different geographic regions even across the U.S. I've got a potato grower friend who grows potatoes in nine states, 15 locations.

 We see it already happening in the U.S. We think it’s going to go into a more global perspective, and that's really an interesting question and issue because it has profound implications: If we geographically diversify production agriculture, how will the potential weather variability impact total supplies? Will we get diversification benefits? We don't know. But one would logically think that we do. So, will there be farming opportunities in other parts of the world that farmers — whether they be U.S., whether they be European, whether they be South American — ought to be seriously thinking about? The answer is yes.

Tom:                Mary Shelman, thoughts on this?

Land probably isn't the unit of natural resource that we should be looking at. I think water is, in the future, the way that we're going to frame farming operations.

Mary:              Well, I absolutely agree there are opportunities all over the world. Mike didn't mention Africa. I think that's the next frontier for farming, and they need a lot of strong technology and value chain development there to make that work. However, to come back to the opportunities in the U.S., I think they're still very strong, although it's a bit of a transition from the typical push mentality into one that's more based on getting the most value per acre, per animal, per unit of natural resource. Land probably isn't the unit of natural resource that we should be looking at. I think water is, in the future, the way that we're going to frame farming operations. You think about what happens with the tremendous growth of the Brazilian soybean industry — it's basically shipping water from Brazil to China. That's really how I think about agriculture in the world: removing water from one place to the other. There is also the New Zealand dairy industry, selling water basically through milk powders to China, to India, to other places in the world.

                        I think here that there are tremendous opportunities, but our farmers have to be much smarter in terms of all these technologies we were talking about, the different ways that they think about their business, and connecting to markets and figuring out where to get the most value from that water, from that land, and how to factor in the risks.

Tom:                Karl? Aidan? Thoughts?

Karl:                 One of the things that we haven't touched on much here is the efficiency of animal protein production. If you start looking at things that are going on around the world right now, aquaculture is one that will really get your interest. The development of recirculating aquaculture systems is full-steam right now. More of them are going into Norway — their production of fish. These recirculating systems are going to grow tenfold in the next five years.

Tom:                And those are land-based, correct?

Karl:                 Those are land-based systems, but they're very intensive when looking at protein production. We're talking about a system that's probably three to four times more efficient than any of the terrestrial animals we're used to working with. They're better than chickens, they're better than pork, they're better than beef by a long way. So those kinds of impacts are going to be tremendous when it actually comes to looking at animal protein and the way they're being developed. For us in the feed industry, the implications are gigantic.

Tom:                Thoughts, Aidan?

Aidan:              No.

Tom:                Nope. Okay. I do have one that I think you might like to address: Blockchain. This, by the way, comes to us from Simon Duke of Feedinfo.

Aidan:              You can thank him personally from me.

Tom:                What’s your opinion of blockchain and its potential for the animal nutrition industry?

Aidan:              Blockchain is one of the most exciting of the digital technologies. It's also one of the most difficult to get your head around. I suppose the bitcoin example is the one that most people are most familiar with, and it's the one that probably makes it easiest for people to understand: You have something which is this digital ledger where you can understand what's happening in the chain, but not see the individual actors or the individual people who are involved in the chain. I think that has tremendous implications for agriculture. Typically, as farmers, we have not liked people knowing exactly where our cattle come from. At the same time, when there's a disease, we want to be able to trace it back. We've not liked knowing who the people are who transform our food from when it's grown on the land to when we consume it. And, yes, again, if there's an E. coli outbreak and a child dies, we want to know where it occurred and how it happened.

Traceability is a fundamental part of our future. Recapturing the confidence of consumers is extremely important, and I think blockchain is the technology that allows us to do so in a manner that keeps us comfortable.

                        I think when you see companies like Walmart getting behind blockchain and using it in countries like China and being so impressed by its potential — and then they start taking it to the United States and elsewhere — I think you can see what the possibilities are. Traceability is a fundamental part of our future. Recapturing the confidence of consumers is extremely important, and I think blockchain is the technology that allows us to do so in a manner that keeps us comfortable. We're not giving away all of our secrets and, therefore, perhaps not trading our margins to the end food retailer, but at the same time making sure that something does occur. How fortunate that is that we can actually find out where that occurred, what it is that we need to do to stop it happening again.

Michael:          I think this issue of blockchain is a really important issue — sorry for interrupting — but let me just leverage those comments on food safety and traceability just a little bit further. A lot of people, when they talk about blockchain, think about it in terms of the financial markets and some other breaches we've had recently in the financial markets and personal security, et cetera, are really important. So that's where a lot of the common perspective is. But it's interesting how some industries are actually quite ahead of us in terms of using blockchain traceability. For example, the diamond industry is using it as a mechanism to try to trace and make sure that those diamonds that they're sourcing not only are true and accurate diamonds, their location and — back to Mary's points — are with the right credence attributes — that they are mined in the right way with the right work pros, with the right people. So, I think that this whole issue of traceability and food safety will be probably the biggest impact that blockchains have on the agricultural sector.

Tom:                Okay. We have time for one more question before we wrap things up, and let's begin with Mary, if you would. What are the opportunities for farmers to change the way they sell food? Are there specific ways in which farmers can view this as an opportunity to be more profitable or to gain even new markets?

Mary:              We talked about this growing fragmentation on the consumer end of it, that it's moving beyond just wanting cheap and accessible and safe food into things that align with values and other things around the specialty side. I think that does provide some opportunities at the farm level, first of all, just to be much more market-oriented and know where that profit potential is and basically growing what the market is interested in buying rather than what you want to sell. But not everybody can be direct-to-consumer. There are opportunities with technology now. We see the rise of some brands from the farm level. It starts out like a Laura's Lean Beef or Creekstone Farms or Pete and Gerry's Organic Eggs — things that come with some specialty proposition — that actually move all the way to the brand level. When I was in New Zealand last week, McDonald's had big banners in their stores saying, “We sell 100% free-range eggs.”

                        These types of changes are coming. If you look at the AmazonFresh website, you can buy hamburgers from a single cow. When you think about the implications of the supply chain for that and that differentiation, not everybody, clearly, is going to be able to deal with the market at the consumer level. But even at the customer level, the processor level that's buying in, the sustainability pushes inside of these companies, and also better understanding. Again, if you don't satisfy their consumer needs, it will be more about providing these products that have the exact kind of value or attributes that market wants.

                        I think, though, the challenge is that there's tremendous resistance to making those kinds of changes because our system has been set up to move big quantities of relatively undifferentiated products. I was speaking with a buyer of U.S. soybeans in a Southeast Asian country. He said, "We want to buy soybeans based on their oil content because we know how that breaks down in the value proposition." But the big processing companies want to sell soybeans based on whether it's, basically, color and size and the fact that it's this kind of bean and they really don't want to tell. So, it's finding these unique opportunities that are able to match that scale and finding those buyers that are willing to pay.

Tom:                Aidan, what do you see out there?

Apps on phones, websites, digital technologies, the ability to be able to see through cameras what's actually happening on the farm, to be able to see through blockchain what has actually occurred in terms of the way your food is processed — these are all just tremendous opportunities for farmers to engage directly with the end consumers of their food...

Aidan:              Well, Mary summarized it extremely well, which makes it difficult, but I'll maybe take a slightly different approach. I think that we are seeing very large changes in consumer behavior. You see that when they go to the grocery stores or supermarkets and they’re not going to the so-called “center aisles” anymore. They're not choosing to purchase the cornflakes, they're not buying food that, traditionally, was perhaps the macaroni and cheese that was extremely processed, for example, and they're looking for the “mom and pop” — as I call them — brands. These companies may not even have commonly recognized names. Consumers are looking for these companies they perceive as being more organic, more local and fitting with their ideals for food and the way they “vote,” as you put it earlier, Mary.

                        From my perspective, I think that's a massive opportunity for farmers to engage directly with consumers. Instead of farmers going to big food companies or medium-sized food companies, they can go directly farm-to-consumer. They can have a relationship directly with a consumer of their food. That can allow them, hopefully, to capture more value, so they can charge a higher price or just capture more value within the system and to, hopefully, adapt to what they find consumers are looking for. Maybe consumers are asking for questions that larger systems can't accomplish.

The massive opportunities, particularly, through apps on phones, websites, digital technologies, the ability to be able to see through cameras what's actually happening on the farm, to be able to see through blockchain what has actually occurred in terms of the way your food is processed — these are all just tremendous opportunities for farmers to engage directly with the end consumers of their food, and I think, eventually, that makes potentially a more profitable farming system.

Tom:                Dr. Boehlje?

Michael:          Yes, I think Aidan and Mary have really, really synopsized this issue quite well. Let me just put a broader context on it with some keywords. We're increasingly seeing this entire food production and distribution industry move very dramatically from a commodity orientation and a supply chain mentality to a differentiated product orientation and a demand-driven system. Those are very dramatic shifts in terms of what people have to do and how they do it, and the technology is increasingly available to get that done. Consumers are not buying food products. They want food consumption experiences, and that's a really different perspective on this industry than what we’ve had with the traditional producer commodity and what I sometimes refer to as the “produce and peddle mentality”: If I produce it, they will come. That is not the industry of tomorrow.

Tom:                Karl Dawson, thoughts on this?

Karl:                 Well, I guess I would agree with the whole concept here, but there is still a large change needed. I've been involved with programs for the last 15 years producing high-quality beef products with very specific attributes that we felt were of interest to the consumer and receiving good reviews from the consumer. But from a commercialization point of view, to date, those have been failures. We are not getting the story across in a way that allows us to get the feedback from the consumer and get the middleman to buy into the concepts we're making at the producer level or in the production. Alltech Angus was an example of a meat product: Succulent, very good reviews, and, quite frankly, we never could make that go because there was a barrier there between us and the consumer.

                        I see where that's coming from and the potential for doing that, but there's still a big hole in the middle in that commercialization chain that we have to take advantage of. Believe me, I'd love to see it go, because if you tell me what attributes you want in your beef, we can work on those things with our tools today.

The existing system is set up to be more commodity push, and that includes the processing sector. But we see now the advent of these nontraditional actors here: the investors.

Mary:              I might just come back to that because I think that's the same resistance that I was talking about there: Why we can't sell soybeans based on oil content rather than something else? The existing system is set up to be more commodity push, and that includes the processing sector. But we see now the advent of these nontraditional actors here: the investors. You have Bill Gates basically investing in Beyond Meat — alternate protein sources. You have Sergey Brin, founder of Google, investing in tissue culture beef. You have Jeff Bezos of Amazon now completely disrupting everybody's thought pattern by buying Whole Foods. So, hopefully, Karl, I think we're just at the breakthrough point on getting through. There are people in the system now that look at this and say our traditional food system is broken. Now, that's a rough thing, but they're coming with very innovative ideas, very disruptive ideas, and see a new future. And I think we're talking about what that new future is. Hopefully we're close to getting past that.

Tom:                Okay, we have just a few minutes remaining. What I'd like to do to conclude is to go around the panel and ask you to give us your closing thoughts on what viewers of today's discussion might want to consider their main takeaways from what they have heard. We'll begin with you, Dr. Boehlje.

Michael:          We’re certainly talking about an industry that's in a major transformation. In fact, we do programs called “Disruption” and “Chaos,” and that's where we are in this industry. It's been pretty tradition-bound in many cases. As just indicated in the previous conversation, parts of it are still tradition-bound. But there will be a profound transformation from outside the traditional players in the industry when we start doing more — putting together the pharmaceutical and the health industry within the nutrition industry. Maybe we're going to find that what happens is outside forces are going to be shaping up more than they have. When we put sensing technology out there, when IBM decides, which it has, that agriculture is the space where they ought to be spending some time and energy, not just at production, but across the value chain, that makes a big difference in this industry.

                        We’re going to see a lot of both big and small firms and organizations outside the traditional sources or the traditional players in the industry have a very disruptive impact on this industry.

Tom:                Dr. Dawson.

If I had to sum it up in one sentence: It's not your daddy's farm anymore.

Karl:                 Well, I think it's obvious from the conversation today that technology is going to drive a lot of different things. If you look at how we refer to the farmer today, I would change that to “agricultural technologist” rather than “farmer.” We're going to be bucking tradition, and that's one of the things that is a huge problem for a very conservative industry as we're moving forward. But if I had to sum it up in one sentence: It's not your daddy's farm anymore.

Tom:                Mary Shelman, takeaways?

Mary:             I think it's been a great discussion. In particular, the consumer has a much stronger vote today than ever before about what's happening on the farm. Therefore, you have to be market-oriented, and market-oriented not just in terms of thinking about the price of soybeans or the price of beef, but about the fundamental segments that can meet with the different value propositions around it.

                        So that's one piece, and the talent piece is absolutely essential. There are tremendous challenges, but even more importantly, there are tremendous opportunities in the next few years, and I think it's incredibly exciting time. But you have to be a little bit patient because, as Karl said, you can come up with a great product and a great proposition, but time might not be quite right yet. So how do you navigate this transformation that we're in and actually be able to balance looking toward the future while remaining very grounded today and having a successful business?

Innovators are the ones who are going to be successful — they're the ones who are going to survive and thrive. That's the farming of the future for me — innovation.

Aidan:              I think farmers of the future will be innovators. Until now, farmers have been good at learning from others, embracing technologies that others have, learning what methods they use and doing so successfully. In the future, my recommendation to farmers would be to buy yourself a passport, go travel the world, read as much as you can, learn as much as you can, and when you see innovations within reason, embrace them as quickly as possible. I think innovators are the ones who are going to be successful — they're the ones who are going to survive and thrive. That's the farming of the future for me — innovation.

Tom:                Aidan Connolly, Mary Shelman, Karl Dawson, Dr. Michael Boehlje, thank you all for joining us. It's been a fascinating conversation. We appreciate it very much and thank you for joining us.

Farming the Future was a live video panel discussion. To watch the recorded video and learn more about our panelists, click below:

<>Premium Content
Off
<>Featured Image
Farming the future: What's on the horizon?
<>Date
<>Featured Image License
Off
<>Image Caption
The future of farming includes automated machinery, food traceability and data providing unprecedented insights. What do those innovations mean for farmers and consumers? A group of agribusiness experts gathered to discuss the possibilities.
<>Soundcloud
The SoundCloud content at https://soundcloud.com/alltech-1/039-farming-the-future-a-panel-discussion is not available, or it is set to private.
<>Hubspot
<!--HubSpot Call-to-Action Code --><span class="hs-cta-wrapper" id="hs-cta-wrapper-da313af5-05f6-48aa-b6cb-784cf5d8310e"><span class="hs-cta-node hs-cta-da313af5-05f6-48aa-b6cb-784cf5d8310e" id="hs-cta-da313af5-05f6-48aa-b6cb-784cf5d8310e"><!--[if lte IE 8]><div id="hs-cta-ie-element"></div><![endif]--><a href="https://cta-redirect.hubspot.com/cta/redirect/745395/da313af5-05f6-48aa-b6cb-784cf5d8310e" ><img class="hs-cta-img" id="hs-cta-img-da313af5-05f6-48aa-b6cb-784cf5d8310e" style="border-width:0px;" src="https://no-cache.hubspot.com/cta/default/745395/da313af5-05f6-48aa-b6cb-784cf5d8310e.png" alt="Watch Farming the Future"/></a></span><script charset="utf-8" src="https://js.hscta.net/cta/current.js"></script><script type="text/javascript"> hbspt.cta.load(745395, 'da313af5-05f6-48aa-b6cb-784cf5d8310e', {}); </script></span><!-- end HubSpot Call-to-Action Code -->
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Image Caption

The future of farming includes automated machinery, food traceability and data providing unprecedented insights. What do those innovations mean for farmers and consumers? A group of agribusiness experts gathered to discuss the possibilities.

Subscribe to Global
Loading...